《电磁场与电磁波》(陈抗生)习题解答
第一章 引言——波与矢量分析
1.1
?????36?2设E?Eyy0?y010cos(2??10t?2??10x)V/m,求矢量E的方向,波的传播方向,波的幅度,频率f,相位常数k,相速度vp.
解:E?Exx0
???????Eyy0?Ezz0?Eyy0?y010?3cos(2??106t?2??10?2x)V/m
? 矢量E的方向是沿Y轴方向,波的传播方向是-x方向;
波的幅度
E?Ey?10?3V/m
?2??106f???106HZ?1MHZ;2?2??2k?2??10;
6?2??10VP???108m/s。k2??10?2 1.2
写出下列时谐变量的复数表示(如果可能的话)
(1)V(t)?6cos(?t?(2)I(t)??8sin?t?4)(3)A(t)?3sin?t?2cos?t(4)C(t)?6cos(120?t?(5)D(t)?1?cos?t(6)U(t)?sin(?t?
(1)解:
?2)
?3)sin(?t??6)??v(z)??/4
j?4?V?6e?6cos???6jsin?32?32j 44 (2)解:I(t)??8cos(?t??) 2
?v(z)??? 2?8j
?I???j?8e2(3)解:A(t)?13(313sin?t?213cos?t)
?则A(t)?13cos(?t???)213? ??v(z)???2?令cos??则A?13ej(??)23??2?3j(4)解:C(t)?6cos(120?tj?2??) 2?C?6e
??6j
(5)(6)两个分量频率不同,不可用复数表示
1.3由以下复数写出相应的时谐变量]
(1)C?1?j(2)C?4exp(j0.8)(3)C?3exp(j)?4exp(j0.8)2
(1)解:
?(1?j)ej?t?(1?j)(cos?t?jsin?t)?cos?t?jsin?t?jcos?t?sin?t ?C(t)?RE(Cej?t)?cos?t?sin?t
(2)解:C(t)?RE(Cej?t)?RE(4ej0.8ej?t)?4cos(?t?0.8)
j0.8(3)解:Cej?t?(3ej?2?4e)ej?t?j(?t?)2?3e?4ej(?t?0.8)
得:C(t)?RE(Ce 1.4
j?t?)?3cos(?t?)?4cos(?t?0.8)?4cos(?t?0.8)?3cos(?t)
2????????假定A?x0?jy0?(1?j2)z0,B??x0?(1?2j)y0?jz0, ??????????求:A?B,A?B,A?B,Re[A?B]
解:A?B?AxBx?AyBy?AzBz??1
???A?B?AxAyAz?(?4?j4)x0?(?1?3j)y0?(?1?j)z0BxByBz??? B???x0??(1?2j?)z0则:A?B??1?2j?x0y0z0???A?B??1j1?2j得到:RE(A?B?)?6x0?y0?z0?1?(1?2j)?j
1.5计算下列标量场的梯度
?x0?y0?z0(1)u?x2y2z2(2)u?2x2?y2?z2(3)u?xy?yz?xz (4)u?x2?y2?2xy(5)u?xyz
(1)解:
grad(u)??u
?x2y2z2??x2y2z2??x2y2z2??x0?y0?z0?x?y?z
????2xy2z2x0?2x2yz2y0?2x2y2zz0(2)解:
grad(u)??u
????4xx0?2yy0?2zz0
(3) 解:
grad(u)??u
????(y?z)x0?(x?z)y0?(y?x)z0
(4)解:
grad(u)??u
???(2x?2y)x0?(2y?2x)y0
(5)解:
grad(u)??u
????yzx0?xzy0?xyz0
1.6求曲面z
?x2?y2在点(1,1,2)处的法线方向