数学建模案例分析_最优化方法建模6动态规划模型举例

WORD格式可编辑

§6 动态规划模型举例

以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。例如: (1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。 (2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。

(3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。使用时间俞长,处理价值也俞低。另外,每次更新都要付出更新费用。因此,应当如何决定它每年的使用时间,使总的效益最佳。

动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。 (1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k。

(2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。各阶段的状态通常用状态变量描述。常用xk表示第k阶段的状态变量。n个阶段的决策过程有n?1个状态。用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。 (3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。描述决策的变量称为决策变量。决策变量限制的取值范围称为允许决策集合。用

uk(xk)表示第k阶段处于状态xk时的决策变量,它是xk的函数,用Dk(xk)表示xk的允许决策

集合。

(4)策略 一个由每个阶段的决策按顺序排列组成的集合称为策略。由第k阶段的状态xk开始到终止状态的后部子过程的策略记为pk(xk)?{uk(xk),uk?1(xk?1),?,un(xn)}。在实际问题中,可供选择的策略有一定范围,称为允许策略集合。其中达到最优效果的策略称为最优策略。 (5)状态转移方程 如果第k个阶段状态变量为xk,作出的决策为uk,那么第k?1阶段的状态变量xk?1也被完全确定。用状态转移方程表示这种演变规律,写作xk?1?Tk(xk,uk) (6)最优值函数 指标函数是系统执行某一策略所产生结果的数量表示,是用来衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上。指标函数的最优值称为最优值函数。 下面的方程在动态规划逆序求解中起着本质的作用。

专业知识分享

WORD格式可编辑

?fk(xk)?min[vk(xk,uk(xk))?fk?1(xk?1)],uk?Dk(xk)???f(x)?0,x?T(x,u),k?n,n?1,?,1k?1kkk?n?1n?1称此为动态规划逆序求解的基本方程(贝尔曼方程)。 可以把建立动态规划模型归纳成以下几个步骤: (1)将问题恰当地划分为若干个阶段;

(2)正确选择状态变量,使它既能描述过程的演变,又满足无后效性; (3)规定决策变量,确定每个阶段的允许决策集合; (4)写出状态转移方程;

(5)确定各阶段各种决策的阶段指标,列出计算各阶段最优后部策略指标的基本方程。

下面结合具体例子阐述建立动态规划模型的思路。

例13 生产计划问题。公司要对某产品制定n周的生产计划,产品每周的需求量、生产和贮存费用、生产能力的限制、初始库存量等都是已知的,试在满足需求的条件下,确定每周的生产量,使n周的总费用最少。

决策变量是第k周的生产量,记作uk(k?1,2,?,n)。已知下列数据及函数关系:第k周的需求量dk:第k周产量为uk时的生产费为ck(uk);第k周初贮存量为xk时这一周的贮存费为

hk(xk);第k周的生产能力限制为Uk;初始(k?0)及终结(k?n)时贮存量均为零。按

照最短路问题的思路,设从第k周初贮存量为xk到(n周末)过程结束的最小费用函数为fk(xk),则下列逆向递推公式成立。

min[ck(uk)?hk(xk)?fk?1(xk?1)]??fk(xk)?0?uk?Uk???fn?1(xn?1)?0而xk与xk?1满足

xk?Xk,k?n,?,2,1 (1)

?xk?1?xk?uk?dk,??x1?xn?1?0k?n,?,2,1 (2)

这里贮存量xk是状态变量,(2)式给出了相邻阶段的状态在决策变量作用下的转移规律,称为状态转移规律。在用(1)式计算时,xk的取值范围——允许状态集合Xk由(2)式及允许决策集合(0?uk?Uk)决定。

在实际问题中,为简单起见,生产费用常取ck(uk),uk?0;ck(uk)?a?cuk,uk?0,其中c是单位产品生产费,而a是生产准备费。贮存费用常取hk(xk)?hxk,h是单位产品(一

专业知识分享

WORD格式可编辑

周的)贮存费。

最优方程(1)和状态转移方程(2)构成了这个多阶段决策问题的动态规划模型。实际上,多阶段决策问题有时也可用静态规划方法求解,如例2的生产计划问题。

例14 资源分配问题。总量为m1的资源A和总量为m2的资源B同时分配给n个用户,已知第k用户利用数量uk的资源A和数量vk的资源B时,产生的效益为gk(uk,vk),问如何分配现有资源使总效益最大。

这本来是个典型的静态规划问题: MaxZ??gk(uk,vk) (1)

k?1n s.t.?uk?1nk?m1,(2) uk?0

?vk?1nk?m2, vk?0 (3)

但是当gk比较复杂及n较大时,用非线性规划求解是困难的,特别是,若gk是用表格或图形给出而无解析表达式时,则难以求解。而这种情况下,将其转化为动态规划,是一种可行的方法。 资源A,B每分配给一个用户划分为一个阶段,分配给第k用户的数量是二维决策变量

(uk,vk),而把向第k用户分配之前,分配者手中掌握的资源数量作为二维状态变量,记作(xk,yk),这样,状态转移方程应为

?xk?1?xk?uk (4) ?y?y?vkk?k?1最优值函数fk(xk,yk)定义为将数量(xk,yk)的资源分配给第k至第n用户时能获得的最大效益,它满足最优方程

?fk(xk,yk)?max[gk(uk,vk)?fk?1(xk?1,yk?1)],0?uk?xk?0?vk?yk???fn?1(0,0)?00?xk?m1,0?yk?m2,k?n,?,2,1

(5)

对于由(4),(5)式构成的动态规划模型,不需要gk(uk,vk),fk(xk,yk)的解析表达式,完全可以求数值解。

例15 系统可靠性问题。一个系统由若干部件串联而成,只要有一个部件故障,系统就不能正常

专业知识分享

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4