继电保护课后习题答案第二-张保会-尹项根

电力系统如果没有配备完善的继电保护系统,想象一下会出现什么情景?

答:现代的电力系统离开完善的继电保护系统是不能运行的。当电力系统发生故障时,电源至故障点之间的电力设备中将流过很大的短路电流,若没有完善的继电保护系统将故障快速切除,则会引起故障元件和流过故障电流的其他电气设备的损坏;当电力系统发生故障时,发电机端电压降低造成发电机的输入机械功率和输出电磁功率的不平衡,可能引起电力系统稳定性的破坏,甚至引起电网的崩溃、造成人身伤亡。如果电力系统没有配备完善的继电保护系统,则当电力系统出现不正常运行时,不能及时地发出信号通知值班人员进行合理的处理。

继电保护装置在电力系统中所起的作用是什么?

答:继电保护装置就是指能反应电力系统中设备发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置.它的作用包括:1.电力系统正常运行时不动作;2.电力系统部正常运行时发报警信号,通知值班人员处理,使电力系统尽快恢复正常运行;3.电力系统故障时,甄别出发生故障的电力设备,并向故障点与电源点之间、最靠近故障点断路器发出跳闸指令,将故障部分与电网的其他部分隔离。

继电保护装置通过哪些主要环节完成预定的保护功能,各环节的作用是什么?

答:继电保护装置一般通过测量比较、逻辑判断和执行输出三个部分完成预定的保护功能。测量比较环节是册来那个被保护电器元件的物理参量,并与给定的值进行比较,根据比较的结果,给出“是”、“非”、“0”或“1”性质的一组逻辑信号,从而判别保护装置是否应该启动。逻辑判断环节是根据测量环节输出的逻辑信号,使保护装置按一定的逻辑关系判定故障的类型和范围,最后确定是否应该使断路器跳闸。执行输出环节是根据逻辑部分传来的指令,发出跳开断路器的跳闸脉冲及相应的动作信息、发出警报或不动作。

依据电力元件正常工作、不正常工作和短路状态下的电气量复制差异,已经构成哪些原理的保护,这些保护单靠保护整定值能求出保护范围内任意点的故障吗?

答:利用流过被保护元件电流幅值的增大,构成了过电流保护;利用短路时电压幅值的降低,构成了低电压保护;利用电压幅值的异常升高,构成了过电压保护;利用测量阻抗的降低和阻抗角的变大,构成了低阻抗保护。

单靠保护增大值不能切除保护范围内任意点的故障,因为当故障发生在本线路末端与下级线路的首端出口时,本线路首端的电气量差别不大。所以,为了保证本线路短路时能快速切除而下级线路短路时不动作,这种单靠整定值得保护只能保护线路的一部分。

依据电力元件两端电气量在正常工作和短路状态下的差异,可以构成哪些原理的保护? 答:利用电力元件两端电流的差别,可以构成电流差动保护;利用电力元件两端电流相位的差别可以构成电流相位差动保护;利两侧功率方向的差别,可以构成纵联方向比较式保护;利用两侧测量阻抗的大小和方向的差别,可以构成纵联距离保护。

如图1-1所示,线路上装设两组电流互感器,线路保护和母线保护应各接哪组互感器? 答:线路保护应接TA1,母线保护应接TA2。因为母线保护和线路保护的保护区必须重叠,使得任意点的故障都处于保护区内。

母线线路

图1-1 电流互感器选用示意图

结合电力系统分析课程的知识,说明加快继电保护的动作时间,为什么可以提高电力系统

TA1TA2的稳定性? 答:由电力系统分析知识可知,故障发生时发电机输出的电磁功率减小二机械功率基本不变,从而使发电机产生加速的不平衡功率。继电保护的动作时间越快,发电机加速时间越短,功率角摆开幅度就越小,月有利于系统的稳定。

由分析暂态稳定性的等面积理论可知,继电保护的动作速度越快,故障持续的时间就越短,发电机的加速面积就约小,减速面积就越大,发电机失去稳定性的可能性就越小,即稳定性得到了提高。

后备保护的作用是什么?阐述远后备保护和近后备保护的优缺点。

答:后备保护的作用是在主保护因保护装置拒动、保护回路中的其他环节损坏、断路器拒动等原因不能快速切除故障的情况下,迅速启动来切除故障。

远后备保护的优点是:保护范围覆盖所有下级电力元件的主保护范围,它能解决远后备保护范围内所有故障元件由任何原因造成的不能切除问题。 远后备保护的缺点是:(1)当多个电源向该电力元件供电时,需要在所有的电源侧的上级元件处配置远后备保护;(2)动作将切除所有上级电源测的断路器,造成事故扩大;(3)在高压电网中难以满足灵敏度的要求。 近后备保护的优点是:(1)与主保护安装在同一断路器处,在主保护拒动时近后备保护动作;(2)动作时只能切除主保护要跳开的断路器,不造成事故的扩大;(3)在高压电网中能满足灵敏度的要求。

近后备保护的缺点是:变电所直流系统故障时可能与主保护同时失去作用,无法起到“后备”的作用;断路器失灵时无法切除故障,不能起到保护作用。

从对继电器的“四性“要求及其间的矛盾,阐述继电保护工作即是理论性很强,又是工程实践性很强的工作。

答:继电保护的可靠性、选择性、速动性和灵敏性四项要求之间即矛盾又统一。继电保护的科学研究、设计、制造和运行的大部分工作也是围绕如何处理好这四者的辩证统一关系进行的。

电力系统继电保护即是一门理论性很强,又是工程实践性很强的学科。首先继电保护工作者要掌握电力系统、电气设备的基本原理、运行特性和分析方法,特别要掌握电力系统故障时的电气量变化的规律和分析方法,通过寻求电力系统的不同运行状态下电气量变化的特点和差异来“甄别“故障或不正常状态的原理和方法,应用不同的原理和判据实现继电保护的基本方法,所以需要很强的理论性。

由于被保护的电力系统及其相关的电气设备千差万别,故障时电气量的变化受多种因素的影响和制约,因此任何一种继电保护原理或装置都不可能不加调整地应用于不同的电气设备或系统,而应根据实际工程中设备、系统的现状与参数,对其继电保护做出必要的调整。相同原理的保护装置在应用于电力系统不同位置的元件上时,可能有不同的配置和配合;相同的电力元件在电力系统不同位置安装时,可能配置不同的继电保护,这些均需要根据电力系统的工程实际,具体问题具体分析,所以继电保护又具有很强的工程实践性。

2电流的电网保护

在过量(欠量)继电器中,为什么要求其动作特性满足“继电特性”?若不满足,当加入继电器的电量在动作值附近时将可能出现什么情况?

答:过量继电器的继电特性类似于电子电路中的“施密特特性“,如图2-1所示。当加入继电器的动作电量(图中的Ik)大于其设定的动作值(图中的Iop)时,继电器能够突然动作;继电器一旦动作以后,即是输入的电气量减小至稍小于其动作值,继电器也不会返回,只有当加入继电器的电气量小于其设定的返回值(图中的Ire)以后它才突然返回。无论启动还

是返回,继电器的动作都是明确干脆的,它不可能停留在某一个中间位置,这种特性称为“继电特性”。

为了保证继电器可靠工作,其动作特性必须满足继电特性,否则当加入继电器的电气量在动作值附近波动时,继电器将不停地在动作和返回两个状态之间切换,出现“抖动“现象,后续的电路将无法正常工作。

E0162E1534IreIopIk

请列举说明为实现“继电特性”,电磁型、集成电路性、数字型继电器常分别采用那些技术? 答:在过量动作的电磁型继电器中,继电器的动作条件是电磁力矩大于弹簧的反拉力矩与摩擦力矩之和,当电磁力矩刚刚达到动作条件时,继电器的可动衔铁开始转动,磁路气隙减小,在外加电流(或电压)不变的情况下,电磁力矩随气隙的减小而按平方关系增加,弹簧的反拉力矩随气隙的减小而线性增加,在整个动作过程中总的剩余力矩为正值,衔铁加速转动,直至衔铁完全吸合,所以动作过程干脆利落。继电器的返回过程与之相反,返回的条件变为在闭合位置时弹簧的反拉力矩大于电磁力矩与摩擦力矩之和。当电磁力矩减小到启动返回时,由于这时摩擦力矩反向,返回的过程中,电磁力矩按平方关系减小,弹簧力矩按线性关系减小,产生一个返回方向的剩余力矩,因此能够加速返回,即返回的过程也是干脆利落的。所以返回值一定小于动作值,继电器有一个小于1 的返回系数。这样就获得了“继电特性”。

在集成电路型继电器中,“继电特性”的获得是靠施密特触发器实现的,施密特触发器的特性,就是继电特性。

在数字型继电器中,“继电特性”的获得是靠分别设定动作值和返回值两个不同的整定值而实现的。

解释“动作电流”和“返回系数”,过电流继电器的返回系数过低或高各有何缺点?

答:在过电流继电器中,为使继电器启动并闭合其触点,就必须增大通过继电器线圈的电流Ik,以增大电磁转矩,能使继电器动作的最小电流称之为动作电流Iop。

在继电器动作之后,为使它重新返回原位,就必须减小电流以减小电磁力矩,能使继电器返回原位的最大电流称之为继电器的返回电流Ire。

过电流继电器返回系数过小时,在相同的动作电流下起返回值较小。一旦动作以后要使继电器返回,过电流继电器的电流就必须小于返回电流,真阳在外故障切除后负荷电流的作用下继电器可能不会返回,最终导致误动跳闸;而返回系数过高时,动作电流恶和返回电流很接近,不能保证可靠动作,输入电流正好在动作值附近时,可能回出现“抖动”现象,使后续电路无法正常工作。

继电器的动作电流、返回电流和返回系数都可能根据要求进行设定。

在电流保护的整定计算中,为什么要引入可靠系数,其值考虑哪些因素后确定? 答:引入可靠系数的原因是必须考虑实际存在的各种误差的影响,例如: (1)实际的短路电流可能大于计算值;

(2)对瞬时动作的保护还应考虑短路电流中非周期分量使总电流增大的影响;

(3)电流互感器存在误差;

(4)保护装置中的短路继电器的实际启动电流可能小于整定值。

考虑必要的裕度,从最不利的情况出发,即使同时存在着以上几个因素的影响,也能保证在预定的保护范围以外故障时,保护装置不误动作,因而必须乘以大于1的可靠系数。 说明电流速断、限时电流速断联合工作时,依靠什么环节保证保护动作的选择性?依靠什么环节保证保护动作的灵敏度性和速动性?

答:电流速断保护的动作电流必须按照躲开本线路末端的最大短路电流来整定,即考电流整定值保证选择性。这样,它将不能保护线路全长,而只能保护线路全长的一部分,灵敏度不够。限时电流速断的整定值低于电流速断保护的动作短路,按躲开下级线路电流速断保护的最大动作范围来整定,提高了保护动作的灵敏性,但是为了保证下级线路短路时不误动,增加一个时限阶段的延时,在下级线路故障时由下级的电流速断保护切除故障,保证它的选择性。

电流速断和限时电流速断相配合保护线路全长,速断范围内的故障由速断保护快速切除,速断范围外的故障则必须由限时电流速断保护切除。速断保护的速动性好,但动作值高、灵敏性差;限时电流速断保护的动作值低、灵敏度高但需要~的延时才能动作。速断和限时速断保护的配合,既保证了动作的灵敏性,也能够满足速动性的要求。

为什么定时限过电流保护的灵敏度、动作时间需要同时逐级配合,而电流速断的灵敏度不需要逐级配合?

答:定时限过电流保护的整定值按照大于本线路流过的最大负荷电流整定,不但保护本线路的全长,而且保护相邻线路的全长,可以起远后备保护的作用。当远处短路时,应当保证离故障点最近的过电流保护最先动作,这就要求保护必须在灵敏度和动作时间上逐级配合,最末端的过电流保护灵敏度最高、动作时间最短,每向上一级,动作时间增加一个时间级差,动作电流也要逐级增加。否则,就有可能出现越级跳闸、非选择性动作现象的发生。由于电流速断只保护本线路的一部分,下一级线路故障时它根本不会动作,因而灵敏度不需要逐级配合。

如图2-2所示网络,在位置1、2和3处装有电流保护,系统参数为:

E??115/3kV,XG1?15? 、XG2?10?,XG3?10?,L1?L2?60km,L3?40km,

LB?C?50km,LC?D?30km,LD?E?20m,线路阻抗0.4?/km,Krel= 、Krel=Krel= ,

ⅠⅡⅢIB?C.max?300A,IC?D.max?200A, ID?E.max?150A,Kss=、Kre=。试求:

(1)发电机元件最多三台运行,最少一台运行,线路最多三条运行,最少一条运行,请确定保护3在系统最大、最小运行方式下的等值阻抗。

(2)整定保护1、2、3的电流速断定值,并计算各自的最小保护范围。

(3)整定保护2、3的限时电流速断定值,并校验使其满足灵敏度要求(Ksen?)

(4)整定保护1、2、3的过电流定值,假定流过母线E的过电流保护动作时限为,校验保护1作后备用,保护2和3作远备用的灵敏度。

G1A9L18BC7L2632D1EG2G35L34

图2-2 简单电网示意图

XBC=×50=20?,XCD=XL3=×40=16?,解:由已知可得XL1=XL2=×60=24?,

×30?, XDE=×20=8?

(1)经分析可知,最大运行方式及阻抗最小时,则有三台发电机运行,线路L1~L3全部运行,由题意G1,G2连接在同一母线上,则 Xs.min=(XG1||XG2+XL1||XL2)||(XG3+XL3)=(6+12)||(10+16)=

同理,最小运行方式下即阻抗最大,分析可知只有在G1和L1运行,相应地有Xs.max=XG1+XL1=39

BE?C320212D18EXs.min10.6

图2-3 等值电路

(2)对于保护1,其等值电路图如图2-3所示,母线E最大运行方式下发生三相短路流过保护1 的最大短路电流为

Ik.E.max=EXs.min+XBC+XCDXDE=115/3=1.312kA

10.6+20+12+8Ⅰ相应的速断定值为IⅠset.1=Krel×Ik.E.max=×=

骣3琪E13E琪2-Z?L最小保护范围计算公式为IⅠ= == 琪setmins.maxn2Zs.max?Z1LminI0.4琪set琪桫即1处的电流速断保护在最小运行方式下没有保护区。

对于保护2等值电路如图2-3所示,母线D在最大运行方式下发生三相短路流过保护2 的

E最大电流 Ik.D.max==

Xs.min?XBC?XCDⅠ相应的速断定值为 IⅠset.2=Krel×Ik.D.max=×=

?3?E??12最小保护范围为 Lmin=?Ⅱ?Zs.max??= ?Iset.2?0.4????即2处的电流速断保护在最小运行方式下也没有保护区。

对于保护3等值电路如图2-3所示,母线C在最大运行方式下发生三相短路流过保护3 的

E最大电流 Ik.C.max==

Xs.min?XBCⅠ相应的速断定值为 IⅠset.3=Krel×Ik.C.max=×=

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4