重庆市2019年初中学业水平暨高中招生考试数学试题(B卷)(含解答提示)
(全卷共四个大题,满分150分,考试时间120分钟)
参考公式:抛物线
y=ax2+bx+c(a≠0)的顶点坐标为(?b4ac?b2b,),对称轴公式为x=?. 2a4a2a一、选择题(本大题12个小题,每小题4分,共48分)
1.5的绝对值是( ) A、5;B、-5;C、
11;D、?. 55提示:根据绝对值的概念.答案A.
2.如图是一个由5个相同正方体组成的立体图形,它的主视图是( ) ABCD提示:根据主视图的概念.答案D. 3.下列命题是真命题的是( )
A、如果两个三角形相似,相似比为4︰9,那么这两个三角形的周长比为2︰3; B、如果两个三角形相似,相似比为4︰9,那么这两个三角形的周长比为4︰9; C、如果两个三角形相似,相似比为4︰9,那么这两个三角形的面积比为2︰3; D、如果两个三角形相似,相似比为4︰9,那么这两个三角形的面积比为4︰9. 提示:根据相似三角形的性质.答案B. B4.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°, O则∠B的度数为( )
A、60°;B、50°;C、40°;D、30°.
CA提示:利用圆的切线性质.答案B.
5.抛物线y=-3x2+6x+2的对称轴是( )
A、直线x=2;B、直线x=-2;C、直线x=1;D、直线x=-1. 提示:根据试卷提供的参考公式.答案C.
6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( )
A、13;B、14;C、15;D、16. 提示:用验证法.答案C.
7.估计5?2?10的值应在( )
A、5和6之间;B、6和7之间;C、7和8之间;D、8和9之间. 提示:化简得35.答案B.
8.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是-2,若输入x的值是-8,则输出y的值是( ) -x+bx≥3y= 2输入x输出y
x<3y= -2x+b
A、5;B、10;C、19;D、21.
提示:先求出b.答案C.
9.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA=经过点C,则k的值等于( )
yCB
4k.若反比例函数y?(k?0,x?0)5x
A、10;B、24;C、48;D、50.
提示:因为OC=OA=10,过点C作OA的垂线,记垂足为D,解直角三角形OCD.答案C.
10.如图,AB是垂直于水平面的建筑物,为测量AB的高度,小红从建筑底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC,在点D处放置测角仪,测角仪支架DE的高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1︰2.4,那么建筑物AB的高度约为( )(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)
A
E FDA、65.8米;B、71.8米;C、73.8米;D、119.8米.
BC提示:作DG⊥BC于G,延长EF交AB于H.因为DC=BC=52,i=1︰2.4,易得DG=20,CG=48,所以BH=DE+DG=20.8,EH=BC+CG=100,所以AH=51.答案B.
1?x1?2ya??2?(x?7)11.若数a使关于x的不等式组?3有且仅有三个整数解,且使关于y的分式方程???3的解为4y?11?y??6x?2a?5(1?x)正数,则所有满足条件的整数a的值之和是( )
A、-3;B、-2;C、-1;D、1.
提示:由不等式组的条件得:-2.5≤a<3.由分式方程的条件得:a<2且a≠1.综上所述,整数a为-2,-1,0.答案A.
12.如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1,连接DE,将△AED沿直线沿直线AE翻折至△ABC所在的平面内,得到△AEF,连接DF,过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为( )
A
E
GF
A、8;B、42;C、22?4;D、32?2.
提示:易证△AED≌△AEF≌△BGD,得ED=EF=GD,∠DGE=45°,进而得∠BGD=∠AED=∠AEF=135°,易得△DEG和△DEF都是等腰直角三角形,设DG=x,则EG=2x,注意AB=3,BG=AE=1,∠AEB=90°,可解得x=2?二、填空题(本大题6个小题,每小题4分,共24分) 13.计算:(3?1)0?()?1= . 提示:根据零指数幂、负整数指数幂的意义.答案3.
14.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000用科学记数法表示为 . 提示:根据科学记数法的意义.答案1.18×106.
15.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的2倍的概率是 .
BDC2.答案D. 212
提示:由树状图知总共有36种,符合条件的有3种.答案:
1. 1216.如图,四边形ABCD是矩形,AB=4,AD=22,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是 .
A B DCE
F提示:连AE,易得∠EAD=45°.答案82?8.
17.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速度的
5快步赶往学校,并在从家出发后23分钟到4校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小明家到学校的路程为 米. y/米
1380
0111623x/分钟提示:设小明原速度为x米/分钟,则拿到书后的速度为1.25x米/分钟,
家校距离为11x+(23-11)×1.25x=26x.设爸爸行进速度为y米/分钟,由题意及图形得: 11x=(16-11)y且(16-11)(1.25x+y)=1380.解得:x=80,y=176.答案2080.
18.某磨具厂共有六个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的
38和.甲、乙两组检验员进驻该厂进行产品检验.在同时开始检验产品时,每个43车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先
用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是 .
提示:设第一、二、三、四车间每天生产相同数量的产品为x个,则第五车间每天生产的产品为x个,第六五车间每天生产的产品为x个,每个车间原有成品均为m个.甲组有检验员a人,乙组有检验员b人,每个检验员的检验速度为c个/天.由题意得: 6(x+x+x+)+3m=6ac,2(x?38x)?2m?2bc,(2?4)?x?m?4bc由后两式可得m=3x,代入前两式可求得.答案18︰19.438334