?2a-1>3a-6?
答案:D
x+y-1≥0,??
4.在平面直角坐标系中,若不等式组?x-1≤0,(a为常数)所表示的平面区域的面
??ax-y+1≥0
积等于2,则a的值为( )
A.-5 B.1 C.2 D.3
解析:由题意知,不等式组所表示的平面区域为一个三角形区域,设为△ABC,则A(1,0),B(0,1),C(1,1+a),且a>-1.
1
因为S△ABC=2,所以(1+a)×1=2,所以a=3.
2答案:D
x-y+5≥0,??
5.若不等式组?y≥a,表示的平面区域是一个三角形及其内部,则a的取值范
??0≤x≤2
围是( )
A.a<5 C.5≤a<7
B.a≥7 D.a≥7或a<5
解析:不等式x-y+5≥0和0≤x≤2表示的平面区域如图所示.因为原不等式组表示的平面区域是一个三角形及其内部,所以由图可知5≤a<7.
答案:C 二、填空题
6.若不等式|3x+2y+c|≤8表示平面区域总包含点(0,1),(1,1),则c的取值范围是________.
??|2+c|≤8,
解析:由题意得??-10≤c≤3.
?|5+c|≤8?
答案:[-10,3]
7.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4 t、硝酸盐18 t;生产1车皮乙种肥料需要的主要原料是磷酸盐1 t、硝酸盐15 t.现库存磷酸盐10 t、硝酸盐66 t,在此基础上生产这两种混合肥料,设x,y分别为计划生产甲、乙两种混合肥料的车皮数,列出满足生产条件的数学关系式___________.
解析:由题意知满足以下条件:
4x+y≤10,??18x+15y≤66,
?x∈N,
??y∈N.
4x+y≤10
??18x+15y≤66答案:?
x∈N??y∈N
x+y-3≥0,??
8.x,y满足?x-y+1≥0,若方程y=kx有解,则k的取值范围是
??3x-y-5≤0,
____________________.
解析:不等式组表示的平面区域如图阴影部分所示,三条边界线的交点分别记为A,B,
C,由图可知y=kx应在直线OA与OB之间,所以kOB≤k≤kOA,即≤k≤2.
1
2
?1?答案:?,2? ?2?
三、解答题
x>0,??
9.求不等式组?y>0,表示的平面区域的面积及平面区域内的整数点坐标.
??4x+3y≤12
解:画出平面区域(如图所示),区域图形 为直角三角形.
1
面积S=×4×3=6.
2
x的整数值只有1,2.当x=1时,代入4x+3y≤12,得y≤.
83
所以整点为(1,2),(1,1).
4
当x=2时,代入4x+3y≤12,得y≤.
3所以整点为(2,1).
综上可知,平面区域内的整点坐标为(1,1)、(1,2)和(2,1). 10.画出下列不等式表示的平面区域. (1)(x-y)(x-y-1)≤0; (2)|3x+4y-1|<5; (3)x≤|y|<2x.
??x-y≥0,
解:(1)由(x-y)(x-y-1)≤0,得?
?x-y-1≤0,???x-y≤0,
解得0≤x-y≤1或?无解.
?x-y-1≥0,?
故不等式表示的平面区域如图(1)所示. (2)由|3x+4y-1|<5,得-5<3x+4y-1<5,
??3x+4y-6<0,
得不等式组?
?3x+4y+4>0,?
故不等式表示的平面区域如图(2)所示. (3)当y≥0时,原不等式可化为
x≤y,??
?y≤2x,是点(x,y)在第一象限内两条过原点的射线y=x(x≥0)与y=2x(x≥0)所表??x≥0,
示的区域内.
当y≤0时,由对称性作表出另一半区域. 故不等式表示的平面区域如图(3)所示.
(1) (2) (3)
B级 能力提升
1.若函数y=2图象上存在点(x,y)满足不等式组
xx+y-3≤0,??
?x-2y-3≤0,则实数m的最大值为( ) ??x≥m,
13
A. B.1 C. D.2 22
解析:不等式组表示的平面区域D如图中阴影部分所示,函数y=2的图象经过D上的
???y=2,?x=1,?点,由得?即交点坐标为(1,2),当直线?x+y-3=0,??y=2,?
xxx=m过点(1,2)时,实数m取得最大值1.
答案:B
2.已知x,y为非负整数,则满足x+y≤2的点(x,y)共有________个.
解析:因为x,y为非负整数,所以满足x+y≤2的点有(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)共6个.
答案:6
3.在△ABC中,各顶点坐标分别为A(3,-1)、B(-1,1)、C(1,3),写出△ABC区域所表示的二元一次不等式组.
解:如图所示,可求得直线AB、BC、CA的方程分别为x+2y-1=0,x-y+2=0,2x+y-5=0.由于△ABC区域在直线AB右上方,
所以x+2y-1≥0;
在直线BC右下方,所以x-y+2≥2; 在直线AC左下方,所以2x+y-5≤0.
x+2y-1≥0,??
所以△ABC区域可表示为?x-y+2≥0,
??2x+y-5≤0.