离散数学图论部分形成性考核书面作业
★ 形成性考核作业 ★
离散数学作业5
姓 名: 学 号: 得 分: 教师签名: 离散数学图论部分形成性考核书面作业
本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。
要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月5日前完成并上交任课教师(不收电子稿)。并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。
一、填空题
1.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4
度结点,则G的边数是 15 .
2.设给定图G(如右由图所示),则图G的点割集是 {f} .
3.设G是一个图,结点集合为V,边集合为E,则 G的结点 度数之和 等于边数的两倍.
4.无向图G存在欧拉回路,当且仅当G连通且 等于出度 . 5.设G=
6.若图G=
7.设完全图Kn有n个结点(n?2),m条边,当 n为奇数 时,Kn中存在欧拉回路.
8.结点数v与边数e满足 e=v-1 关系的无向连通图就是树. 9.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去 4 条边后使之变成树.
10.设正则5叉树的树叶数为17,则分支数为i = 5 .
二、判断说明题(判断下列各题,并说明理由.)
1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路..
1
★ 形成性考核作业 ★
(1) 不正确,缺了一个条件,图G应该是连通图,可以找出一个反例,比如图G是一个有孤立结点的图。
2.如下图所示的图G存在一条欧拉回路.
(2) 不正确,图中有奇数度结点,所以不存在是欧拉回路。
3.如下图所示的图G不是欧拉图而是汉密尔顿图.
解:正确
G
因为图中结点a,b,d,f的度数都为奇数,所以不是欧拉图。
如果我们沿着(a,d,g,f,e,b,c,a),这样除起点和终点是a外,我们经过每个点一次仅一次,所以存在一条汉密尔顿回路,是汉密尔顿图
4.设G是一个有7个结点16条边的连通图,则G为平面图. 解:(1) 错误
假设图G是连通的平面图,根据定理,结点数v,边数为e,应满足e小于等于3v-6,但现在16小于等于3*7-6,显示不成立。所以假设错误。
5.设G是一个连通平面图,且有6个结点11条边,则G有7个面.
(2) 正确
根据欧拉定理,有v-e+r=2,边数v=11,结点数e=6,代入公式求出面数r=7
三、计算题
1.设G=
(1) 给出G的图形表示; (2) 写出其邻接矩阵; (3) 求出每个结点的度数; (4) 画出其补图的图形. 解:(1)
2
★ 形成性考核作业 ★
v?
?v
? v0100??0110?1011?
?1101?0110??v?
? v(2) 邻接矩阵为
?0??0?1??0?0? (3) 1
v结点度数为1,v2结点度数为2,v3结点度数
为3,v4结点度数为2,v5结点度数为2
(4) 补图图形为
v? v? ? v? v?v
2.图G=
(1)画出G的图形; (2)写出G的邻接矩阵; (3)求出G权最小的生成树及其权值.
(1)G的图形如下:
3
★ 形成性考核作业 ★
(2)写出G的邻接矩阵
(3)G权最小的生成树及其权值
3.已知带权图G如右图所示.
(1) 求图G的最小生成树; (2)计算该生成树的权值.
解:(1) 最小生成树为
4