制造厂所提供的是通过性能试验所得到的通用性能曲线。 第四章 思考题:
1. 何谓汽蚀现象?它对泵的工作有何危害?
答:汽泡的形成、发展和破裂以致材料受到破坏的全部过程,称为汽蚀现象。 危害:(1)材料破坏 (2)噪声和振动(3)性能下降
2. 为什么泵要求有一定的几何安装高度?在什么情况下出现倒灌高度? 答:提高吸水性能,使泵在设计工况下工作时不发生汽蚀。
当吸水池液面压力等于该温度下液体所对应的饱和压力Pv时,出现倒灌高度。 3. 电厂的给水泵及凝结水泵为什么都安装在给水容器的下面?
答:给水泵的吸入容器是除氧器,凝结水泵的吸入容器是凝汽器,除氧器和凝汽器里都是饱和状态,即液面压力等于该温度下水的饱和压力。为了避免发生汽蚀,需采用倒灌高度,因此给水泵及凝结水泵都安装在水容器的下面。
4. 何谓有效汽蚀余量?ha和必需汽蚀余量?hr,二者有何关系?
答:有效汽蚀余量?ha:指泵在吸入口处,单位重量液体所具有的超过汽化压力(饱和蒸汽压力)的富余能量。
必需汽蚀余量:指液体在泵吸入口的能头对压力最低点处静压能头的富余能头。
二者关系:当(?hr>?ha)时,泵内发生汽蚀; 当(?hr<?ha=时,泵内不会发生汽蚀;
当(?hr=?ha=?hc)时,处于临界状态。
5. 产品样品中提供的允许汽蚀余量[?h]是怎样得到的?
答:厂家通过汽蚀实验得到临界汽蚀余量?hc,为保证泵不发生汽蚀,?hc加一安全量,得允许汽蚀余量[?h]。
6. 为什么目前多采用汽蚀余量来表示泵的汽蚀性能,而较少用吸上真空高度来表示? 答:因为使用汽蚀余量时不需要进行换算,特别对电厂的锅炉给水泵和凝结水泵,吸入液面都不是大气压力的情况下,尤为方便。同时汽蚀余量更能说明汽蚀的物理概念,因此,目前已较多使用汽蚀余量。
7. 提高转速后,对泵的汽蚀性能有何影响?
答:对同一台泵来说,当转速变化时,汽蚀余量随转速的平方成正比关系变化,即当泵的转速提高后,必需汽蚀余量成平方增加,泵的抗汽蚀性能大为恶化。
8. 为什么说汽蚀比转数也是一个相似特征数?使用无因次汽蚀比转数有何优点? 答:因为汽蚀比转数是由流量相似定律和汽蚀相似定律推导而来的。因此也是一个相似特征数。
优点:不需要进行单位换算。
9. 提高泵的抗汽蚀性能可采用那些措施?基于什么原理? 答:一、提高泵本身的抗汽蚀性能
(1)降低叶轮入口部分流速。一般采用两种方法:①适当增大叶轮入口直径D0;②增大
叶片入口边宽度b1。也有同时采用既增大D0又增大b1的方法。这些结构参数的改变,均应有一定的限度,否则将影响泵效率。
(2)采用双吸式叶轮。双吸式叶轮的必需汽蚀余量是单吸式叶轮的63%,因而提高了泵的抗汽蚀性能。
(3)增加叶轮前盖板转弯处的曲率半径。这样可以减小局部阻力损失。 (4)叶片进口边适当加长。即向吸人方向延伸,并作成扭曲形。
(5)首级叶轮采用抗汽蚀性能好的材料。如采用含镍铬的不锈钢、铝青铜、磷青铜等。 二、提高吸入系统装置的有效汽蚀余量?ha
可以采取如下措施:
(1)减小吸入管路的流动损失。即可适当加大吸入管直径,尽量减少管路附件,如弯头、阀门等,并使吸人管长最短。
(2)合理确定两个高度。即几何安装高度及倒灌高度。
(3)采用诱导轮。主叶轮前装诱导轮,使液体通过诱导轮升压后流入主叶轮(多级泵为首级叶轮),因而提高了主叶轮的有效汽蚀余量,改善了泵的汽蚀性能。
(4)采用双重翼叶轮。双重翼叶轮由前置叶轮和后置离心叶轮组成,与诱导轮相比,其主要优点是轴向尺寸小,结构简单,且不存在诱导轮与主叶轮配合不好,而导致效率下降的问题。所以,双重翼离心泵不会降低泵的性能,却使泵的抗汽蚀性能大为改善。
(5)采用超汽蚀泵。在主叶轮之前装一个类似轴流式的超汽蚀叶轮,其叶片采用了薄而尖的超