第一届全国大学生数学竞赛预赛试卷(非数学类)
一、填空题(每小题5分,共20分)
y(x?y)ln(1?)xdxdy?____________,其中区域D由直线x?y?1与两坐标轴所
1.计算??D1?x?y围成三角形区域.
解 令x??01?y?u,x?v,则x?v,y?u?v,dxdy?det??1?1??dudv?dudv,
??y(x?y)ln(1?)ulnu?ulnvxdxdy???D1?x?y??D1?ududv
uulnuuudv?lnvdv)du??0001?u1?u 21ulnuu(ulnu?u)???du01?u1?u??(1??令t10u2du (*) 1?u?1?u,则u?1?t2,du??2tdt,u2?1?2t2?t4,u(1?u)?t2(1?t)(1?t),
01(*)??2?(1?2t2?t4)dt
?2?101?16?2(1?2t?t)dt?2?t?t3?t5??
5?015?32412.设
f(x)是连续函数,且满足f(x)?3x??f(x)dx?2, 则f(x)?____________.
022解 令A?2?20f(x)dx,则f(x)?3x2?A?2,
A??(3x2?A?2)dx?8?2(A?2)?4?2A,
0解得A?1042。因此f(x)?3x?33。
x2?y2?2平行平面2x?2y?z?0的切平面方程是__________. 3.曲面z?2x2?y2?2在(x0,y0)处的解 因平面2x?2y?z?0的法向量为(2,2,?1),而曲面z?2法向量为(zx(x0,y0),zy(x0,y0),?1),故(zx(x0,y0),zy(x0,y0),?1)与(2,2,?1)平行,因此,由
zx?x,zy?2y知2?zx(x0,y0)?x0,2?zy(x0,y0)?2y0,
即x0又z(x0,y0)?z(2,1)?5,于是曲面2x?2y?z?0在(x0,y0,z(x0,y0))处?2,y0?1,
x2?y2?2平行平面 的切平面方程是2(x?2)?2(y?1)?(z?5)?0,即曲面z?22x?2y?z?0的切平面方程是2x?2y?z?1?0。
4.设函数
y?y(x)由方程xef(y)?eyln29确定,其中f具有二阶导数,且
f??1,则
d2y
?________________. dx2
解 方程xef(y)?eyln29的两边对x求导,得
ef(y)?xf?(y)y?ef(y)?eyy?ln29
因eyln29?xef(y),故
11,因此 ?f?(y)y??y?,即y??xx(1?f?(y))
d2y1f??(y)y????y???dx2x2(1?f?(y))x[1?f?(y)]2f??(y)1f??(y)?[1?f?(y)]2?2??x[1?f?(y)]3x2(1?f?(y))x2[1?f?(y)]3不会:二、(5分)求极限lim(
e?ex2xx?0???e)nnxex,其中n是给定的正整数.
解法1 因
ex?e2x???enxxex?e2x???enx?nxlim()?lim(1?) x?0x?0nn故
eeex?e2x???enx?neA?limx?0nx
x2xnxe?e???e?n?elimx?0nxex?2e2x???nenx1?2???nn?1?elim?e?e
x?0nn2因此
ex?e2x???enxxlim()?eA?ex?0n解法2 因
een?1e2
ex?e2x???enxxln(ex?e2x???enx)?lnn limln()?elimx?0x?0nxex?2e2x???nenx1?2???nn?1?elimx?e?e
x?0e?e2x???enxn2故
ex?e2x???enxxlim()?eA?ex?0n
三、(15分)设函数并讨论g?(x)在x解 由limx?0en?1e2
f(x)连续,g(x)??f(xt)dt,且lim0x?01f(x)?A,A为常数,求g?(x)x?0处的连续性.
f(x)f(x)?0 ?A和函数f(x)连续知,f(0)?limf(x)?limxlimx?0x?0x?0xx1因g(x)??f(xt)dt,故g(0)??f(0)dt?f(0)?0,
010因此,当x?0时,g(x)?1xf(u)du,故 ?0x?limg(x)?limx?0x?0x0f(u)dux?limx?0f(x)?f(0)?0 1当x?0时,
g?(x)??1x2?x0f(u)du?f(x)x,
x1xf(t)dtf(t)dt?0?f(x)Ag(x)?g(0)0x?lim? g?(0)?lim?lim?limx?02xx?0x?0x?02xxx2limg?(x)?lim[?x?0x?01x2?x0f(u)du?f(x)f(x)1]?lim?lim2x?0x?0xxx?x0f(u)du?A?AA? 22这表明g?(x)在x
?0处连续.
?{(x,y)|0?x??,0?y??},L为D的正向边界,试证:
四、(15分)已知平面区域D(1)
?xeLsinydy?ye?sinxdx??xe?sinydy?yesinxdx;
L(2)
52siny?sinyxedy?yedx??. ?2L证 因被积函数的偏导数连续在D上连续,故由格林公式知 (1)
???siny?sinxsiny?sinx?xedy?yedx?(xe)?(?ye)?dxdy ??x????y?LD?