六年级奥数解析:棋盘中的数学
1.如下页图是一个3×101的棋盘,甲每次可走一个黑子,乙每次可走一个白子.每枚棋子只能在它所在的行沿固定方向移动,走步数不限,但不能越过对方棋子,谁不能走子谁算输.若甲先走,请指出甲必取胜的着法.
2.对8×8的棋盘,讨论“皇后登山”问题.
3.在普通围棋盘上(共18×18=324个格)讨论“皇后登山”游戏.
4.图a是一个彩色激光棋盘,上面有红(打×)黄(空白格),蓝(斜线格)三种颜色的方格.游戏人可以随意地通过按电钮将某一行或某一列的小方格同时改变颜色,红变黄,黄变蓝,蓝变红,如果按不多于10次电钮将图a变为图b,便可得奖.问游戏人能否得奖?
5.由甲在2×19的棋盘格上任放两个皇后Q1与Q2(如图)于两行中,然后乙开始先走棋:如果走一个皇后,则可把任一皇后向右(向E方向)走任意多少格;如果同时走两个皇后,则必须向右同时走相同的格数,不得不走棋,也不可倒走;这样轮流走棋,谁使得另一方无棋可走时即获胜,试讨论乙取胜的策略.
答案:
1.甲先把一行黑子走99步顶住乙方白子,以后乙走多少格,甲在另一行也走多少格,最后甲必取胜. 2.见例3说明中第1款.
3.见例3说明中第2款,其12个制高点如下图所示.
4.参加游戏的人无论按多少次电钮都无法把图a变为图b.事实上只需证明左上角3×3的矩形不能互相转换就行了.为此,我们分别用数字1、0、-1分别代换红、黄、蓝三种颜色.注意每按一次电钮,同时改变颜色的三个方格的数字和虽可能改变,但被3除余数是不变的,图a左上角9个数字和被3除余数是0,图b左上角9个数字和被3除余数是1,故图a永变不成图b.
5.Q1到E有16格,Q2到E有13格,可记为(16,13)乙应把棋走成(8,13)或(7,4).往后只要不犯错误,便可取胜.