计量经济学——异方差性
5.3解:
(1)构建以家庭消费支出(Y)为被解释变量,家庭人均纯收入(X)为解释变量的线性回归模型:
????=????+????????+????
建立Eviews文件,生成家庭消费支出(Y)、家庭人均纯收入(X)等数据,利用OLS方法估计模型参数,得到的回归结果如下图所示:
Dependent Variable: Y Method: Least Squares Date: 11/05/14 Time: 00:56 Sample: 1 31
Included observations: 31
Variable C X
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
Coefficient 179.1916 0.719500
Std. Error 221.5775 0.045700
t-Statistic 0.808709 15.74411
Prob. 0.4253 0.0000 3376.309 1499.612 15.30377 15.39628 15.33392 1.461684
0.895260 Mean dependent var 0.891649 S.D. dependent var 493.6240 Akaike info criterion 7066274. Schwarz criterion -235.2084 Hannan-Quinn criter. 247.8769 Durbin-Watson stat 0.000000
即参数估计与检验的结果为
????=179.1916+0.719500???? (221.5775) (0.045700) t=(0.808709) (15.74411)
R2=0.895260 F=247.8769 n=31
(2)利用White方法检验异方差,则White检验结果见下表:
Heteroskedasticity Test: White F-statistic
7.194463 Prob. F(2,28)
0.0030 0.0052 0.0000 Prob.
Obs*R-squared Scaled explained SS
10.52295 Prob. Chi-Square(2) 30.08105 Prob. Chi-Square(2)
Coefficient
Std. Error
t-Statistic
Test Equation:
Dependent Variable: RESID^2 Method: Least Squares Date: 11/05/14 Time: 01:11 Sample: 1 31
Included observations: 31
Variable
C X X^2
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
69872.27 -72.02221 0.020337
641389.0 248.7240 0.020627
0.108939 -0.289567 0.985972
0.9140 0.7743 0.3326 227944.3 592250.3 29.16732 29.30610 29.21256 2.390409
0.339450 Mean dependent var 0.292268 S.D. dependent var 498241.3 Akaike info criterion 6.95E+12 Schwarz criterion -449.0935 Hannan-Quinn criter. 7.194463 Durbin-Watson stat 0.003011
2
从检验的结果可以看出,n??2=10.52295,对于在α=0.05的情况下,可以得到临界值??0.05(2)
2
=5.9915,此时 n??2=10.52295>??0.05(2)=5.9915,所以拒绝原假设,不拒绝备择假设,表明模型存在异方差。
该模型存在异方差的理由是,从数据可以看出,一是截面数据;二是各省市经济发展不平衡,使得一些省市农村居民收入高出其它省市很多,如上海市、北京市、天津市和浙江省等。而有的省就很低,如甘肃省、贵州省、云南省和陕西省等。 (3)用加权最小二乘法修正异方差,取用权数w3的效果最好。结果如下:
Dependent Variable: Y Method: Least Squares Date: 11/05/14 Time: 01:38 Sample: 1 31
Included observations: 31 Weighting series: W3
Variable C X
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
Coefficient 787.2847 0.561472
Std. Error 173.6964 0.055731
t-Statistic 4.532534 10.07468
Prob. 0.0001 0.0000 2743.600 1165.059 14.13528 14.22780 14.16544 2.482750 2485.097
w1=111,w2=,w3=2 ,经过试算,认为xxxWeight type: Inverse standard deviation (EViews default scaling)
Weighted Statistics
0.777776 Mean dependent var 0.770114 S.D. dependent var 275.2095 Akaike info criterion 2196468. Schwarz criterion -217.0969 Hannan-Quinn criter. 101.4992 Durbin-Watson stat 0.000000 Weighted mean dep.
R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat
Unweighted Statistics 3376.309 1499.612 10254472
0.848003 Mean dependent var 0.842762 S.D. dependent var 594.6448 Sum squared resid 1.741955
修正后的结果为
????=787.2847+0.561472???? (173.6964) (0.055731) t=(4.532534) (10.07468)
R2=0.777776 F=101.4992 n=31
5.5解:
(1)构建以人均年交通通信消费支出(Y)为被解释变量,人均年可支配收入(X)为解释变量的线性回归模型: ????=????+????????+????
建立Eviews文件,生成人均年交通通信消费支出(Y)、人均年可支配收入(X)等数据,利用OLS方法估计模型参数,得到的回归结果如下图所示:
Dependent Variable: Y Method: Least Squares Date: 11/05/14 Time: 01:56 Sample: 1 31
Included observations: 31
Variable C X
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
Coefficient -562.9210 0.148116
Std. Error 134.8840 0.012730
t-Statistic -4.173372 11.63514
Prob. 0.0002 0.0000 947.2394 478.4074 13.54018 13.63270 13.57034 1.890311
0.823576 Mean dependent var 0.817492 S.D. dependent var 204.3801 Akaike info criterion 1211365. Schwarz criterion -207.8728 Hannan-Quinn criter. 135.3766 Durbin-Watson stat 0.000000
即参数估计与检验的结果为
????=-562.9210+0.148116???? (134.8840) (0.012730) t=(-4.173372) (11.63514)
R2=0.823576 F=135.3766 n=31
从估计结果看,各项检验指标均显著,但从经济意义看,各省市经济发展不平衡,使得一些省市人均年可支配收入高出其它省市很多,如上海市、北京市、江苏省和浙江省等。而有的省就很低,如甘肃省、青海省等,可能存在异方差。