(绝密试题)弹性力学与有限元分析试题及其答案

2012年度弹性力学与有限元分析复习题及其答案

(绝密试题)

一、填空题

1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L-1MT-2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量?x?100MPa,?y?50MPa,?xy?1050 MPa,则主应力

?1?150MPa,?2?0MPa,?1?35?16?。

?y?0MPa,?xy??400 MPa,8、已知一点处的应力分量, ?x?200MPa,则主应力?1?512 MPa,?2?-312 MPa,?1?-37°57′。

9、已知一点处的应力分量,?x??2000MPa,?y?1000MPa,?xy??400 MPa,则主应力

?1?1052 MPa,?2?-2052 MPa,?1?-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。

17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。

19、在有限单元法中,单元的形函数Ni在i结点Ni=1;在其他结点Ni=0及∑Ni=1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

二、判断题(请在正确命题后的括号内打“√”,在错误命题后的括号内打“×”) 1、连续性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。(√) 2、均匀性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。(×) 3、连续性假定是指整个物体是由同一材料组成的。(×) 4、平面应力问题与平面应变问题的物理方程是完全相同的。(×)

5、如果某一问题中,?z??zx??zy?0,只存在平面应力分量?x,?y,?xy,且它们不沿z方向变化,仅为x,y的函数,此问题是平面应力问题。(√)

6、如果某一问题中,?z??zx??zy?0,只存在平面应变分量?x,?y,?xy,且它们不沿z方向变化,仅为x,y的函数,此问题是平面应变问题。(√) 7、表示应力分量与面力分量之间关系的方程为平衡微分方程。(×) 8、表示位移分量与应力分量之间关系的方程为物理方程。(×) 9、当物体的形变分量完全确定时,位移分量却不能完全确定。(√) 10、当物体的位移分量完全确定时,形变分量即完全确定。(√) 11、按应力求解平面问题时常采用位移法和应力法。(×)

12、按应力求解平面问题,最后可以归纳为求解一个应力函数。(×) 13、在有限单元法中,结点力是指单元对结点的作用力。(×) 14、在有限单元法中,结点力是指结点对单元的作用力。(√) 15、在平面三结点三角形单元的公共边界上应变和应力均有突变。(√ )

三、简答题

1、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。

在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。

在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的。弹性力学研究杆状构件,一般都不必引用

那些假定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。 2、简述弹性力学的研究方法。

答:在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立三套方程。即根据微分体的平衡条件,建立平衡微分方程;根据微分线段上形变与位移之间的几何关系,建立几何方程;根据应力与形变之间的物理关系,建立物理方程。此外,在弹性体的边界上还要建立边界条件。在给定面力的边界上,根据边界上微分体的平衡条件,建立应力边界条件;在给定约束的边界上,根据边界上的约束条件建立位移边界条件。求解弹性力学问题,即在边界条件下根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。

3、弹性力学中应力如何表示?正负如何规定?

答:弹性力学中正应力用?表示,并加上一个下标字母,表明这个正应力的作用面与作用方向;切应力用?表示,并加上两个下标字母,前一个字母表明作用面垂直于哪一个坐标轴,后一个字母表明作用方向沿着哪一个坐标轴。并规定作用在正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。相反,作用在负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

4、简述平面应力问题与平面应变问题的区别。

答:平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。对应的应力分量只有?x,?y,

?xy。而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化,对应的位移分量只有u和v 5、简述圣维南原理。

如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。

6、简述按应力求解平面问题时的逆解法。

答:所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。

7、以三节点三角形单元为例,简述有限单元法求解离散化结构的具体步骤。

(1)取三角形单元的结点位移为基本未知量。

(2)应用插值公式,由单元的结点位移求出单元的位移函数。 (3)应用几何方程,由单元的位移函数求出单元的应变。 (4)应用物理方程,由单元的应变求出单元的应力。 (5)应用虚功方程,由单元的应力出单元的结点力。

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4