函数图象中点的存在性问题

第一部分 函数图象中点的存在性问题

1.1 因动点产生的相似三角形问题

例1 2013年上海市中考第24题

如图1,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.

(1)求这条抛物线的表达式;

(2)连结OM,求∠AOM的大小;

(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.

图1

动感体验

请打开几何画板文件名“13上海24”,拖动点C在x轴上运动,可以体验到,点C在点B的右侧,有两种情况,△ABC与△AOM相似.

请打开超级画板文件名“13上海24”,拖动点C在x轴上运动,可以体验到,点C在点B的右侧,有两种情况,△ABC与△AOM相似.点击按钮的左部和中部,可到达相似的准确位置。

思路点拨

1.第(2)题把求∠AOM的大小,转化为求∠BOM的大小.

2.因为∠BOM=∠ABO=30°,因此点C在点B的右侧时,恰好有∠ABC=∠AOM. 3.根据夹角相等对应边成比例,分两种情况讨论△ABC与△AOM相似.

满分解答

(1)如图2,过点A作AH⊥y轴,垂足为H. 在Rt△AOH中,AO=2,∠AOH=30°, 所以AH=1,OH=3.所以A(?1,3).

因为抛物线与x轴交于O、B(2,0)两点, 设y=ax(x-2),代入点A(?1,3),可得a?3. 图2 3所以抛物线的表达式为y?33223x(x?2)?x?x. 333(2)由y?322333, x?x?(x?1)2?3333第 1 页 共 14 页

得抛物线的顶点M的坐标为(1,?33. ).所以tan?BOM?33所以∠BOM=30°.所以∠AOM=150°. (3)由A(?1,3)、B(2,0)、M(1,?3), 3得tan?ABO?233,AB?23,OM?.

33所以∠ABO=30°,

OA?3. OM因此当点C在点B右侧时,∠ABC=∠AOM=150°. △ABC与△AOM相似,存在两种情况: ①如图3,当

BAOABA23??3时,BC???2.此时C(4,0). BCOM33BCOA??3时,BC?3BA?3?23?6.此时C(8,0). BAOM②如图4,当

图3 图4

考点伸展

在本题情境下,如果△ABC与△BOM相似,求点C的坐标.

如图5,因为△BOM是30°底角的等腰三角形,∠ABO=30°,因此△ABC也是底角为30°的等腰三角形,AB=AC,根据对称性,点C的坐标为(-4,0).

图5

第 2 页 共 14 页

例2 2012年苏州市中考第29题

121bx?(b?1)x?(b是实数且b>2)与x轴的正半轴分别交于点A、B(点444A位于点B是左侧),与y轴的正半轴交于点C.

(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);

(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;

(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.

如图1,已知抛物线y?

图1

动感体验

请打开几何画板文件名“12苏州29”,拖动点B在x轴的正半轴上运动,可以体验到,点P到两坐标轴的距离相等,存在四边形PCOB的面积等于2b的时刻.双击按钮“第(3)题”,拖动点B,可以体验到,存在∠OQA=∠B的时刻,也存在∠OQ′A=∠B的时刻.

思路点拨

1.第(2)题中,等腰直角三角形PBC暗示了点P到两坐标轴的距离相等.

2.联结OP,把四边形PCOB重新分割为两个等高的三角形,底边可以用含b的式子表示.

3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q最大的可能在经过点A与x轴垂直的直线上.

满分解答

b). 4(2)如图2,过点P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,那么△PDB≌△PEC. 因此PD=PE.设点P的坐标为(x, x). 如图3,联结OP.

1b15所以S四边形PCOB=S△PCO+S△PBO=??x??b?x?bx=2b.

2428161616解得x?.所以点P的坐标为(,).

555(1)B的坐标为(b, 0),点C的坐标为(0,

第 3 页 共 14 页

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4