建筑结构抗震设计题库复习题(含答案最全面的)

.

【3.2.14】有关结构规则性的判断或计算模型的选择,其中( B )不妥。

(A) 当超过梁高的错层部分面积大于该楼层总面积的30%时,属于平面不规则 (B) 顶层及其他楼层局部收进的水平尺寸大于相邻 的25%时,属于竖向不规则 (C) 平面不规则或竖向不规则的建筑结构,均应采用空间结构计算模型

(D) 抗侧力结构的层间受剪承载力小于相邻上一楼层的80%时,属于竖向不规则 【3.3.1】下列对结构体系描述不正确的是( C ) (A) 宜设躲到抗震防线

(B) 结构在两个主轴方向的动力特性宜相近 (C) 结构在两个主轴方向动力特性相差宜大 (D) 应避免应力集中

【3.5.1】下面所列构件,除( D )外均为非结构构件

(A)女儿墙、雨篷 (B)贴面、装饰柱、顶棚

(C)围护墙、隔墙 (D)砌体结构中的承重墙、构造柱 【3.5.2】下列( C )不属于建筑非结构构件 (A) 女儿墙、雨篷 的美好附属结构构件 (B) 贴面、吊顶等装饰构件 (C) 建筑附属机电设备支架 (D) 围护墙和隔墙

【3.5.3】 某地区抗震设防烈度为7度,下列( B )非结构构件可不需要进行抗震验算 (A) 玻璃幕墙及幕墙的连接 (B) 悬挂重物的支座及其连接 (C) 电梯提升设备的锚固件

(D) 建筑附属设备自重超过1.8kN或其体系自振周期大于0.1s的设备支架、基座及其锚固 【3.7.1】抗震设防地区钢结构钢材应选用( B ) (A) 伸长率不大于20%的软钢 (B) 伸长率大于20%的软钢 (C) 伸长率等于20%的软钢 (D) 硬钢

【3.7.2】按一、二级抗震等级设计时,框架结构中纵向受力钢筋的屈服强度实测值与强度标准值的比值,不应大于( B )

(A)1.25 (B)1.30 (C)1.50 (D)1.80

【3.7.3】抗震设计时,钢筋混凝土构造柱、芯柱、圈梁等混凝土强度等级不应低于( A ) (A)C20 (B)C25 (C)30 (D)C40

【3.7.4】抗震设计时,框支柱及抗震等级为一级的框架梁、柱、节点核芯区,混凝土强度等级不应低于( C )

(A)C20 (B)C25 (C)30 (D)C40

【3.7.5】按一、二级抗震等级设计时,框架结构中纵向受力钢筋的抗拉强度实测值与屈服强度实测值的比值,不应小于( A )

(A)1.25 (B)1.50 (C)1.80 (D)2.00

【3.7.6】对于有抗震设防要求的砖砌体结构房屋,砖砌体的砂浆强度等级不应低于( B ) (A)M2.5 (B)M5 (C)M7.5 (D)M10

可编辑范本

.

7.有抗震设防要求的钢筋混凝土结构施工中,如钢筋的钢号不能符合设计要求时,则( D ) (A) 允许用强度等级低得钢筋代替 (B) 不允许用强度等级高得钢筋代替

(C) 用强度等级高地但钢号不超过Ⅲ级钢的钢筋代替时,钢筋的直径和根数可不变 (D) 用强度等级高地但钢号不超过Ⅲ级钢的钢筋代替时,应进行换算 【4.2.1】下列( A )建筑可不考虑天然地基及基础的抗震承载力。 (A) 砌体房屋

(B) 地基主要受力层范围内存在软弱粘性土的单层厂房 (C) 9度时高度不超过100m的烟囱 (D) 7度时高度为150m的烟囱

2下列建筑中( B )不能确认为可不进行天然地基及基础的抗震承载力验算的建筑物。 (A) 砌体房屋

(B) 地基主要受力层范围内不存在软弱粘性土的单层厂房 (C) 8层以下高度在25m以下的一般民用框架房屋

(D) 《建筑抗震设计规范》规定可不进行上部结构抗震验算的建筑

【4.2.3】天然地基基础抗震验算时,地基土抗震承载力应按( B )确定。 (A) 仍采用地基土静承载力设计值

(B) 为地基土静承载力设计值乘以地基土抗震承载力调整系数 (C) 采用地基土静承载力设计值,但不考虑基础宽度修正 (D) 采用地基土静承载力设计值,但不考虑基础埋置深度修正

【4.2.4】验算天然地基在地震作用下的竖向承载力时,下述标书中( A,C )是正确的。 (A) 基础底面与地基土之间零应力区部超过15% (B) 基础底面与地基土之间零应力区部超过25% (C) P≤faE,且Pmax=1.2 faE (D) P≤faE,或Pmax=1.3 faE

【4.2.5】验算天然地基在地震作用下的竖向承载力时,按地震作用效应标准组合考虑,下述表述中( D )是不正确的。

(A) 基础底面平均压力不应大于调整后的地基抗震承载力

(B) 基础底面边缘最大压力不应大于调整后的地基抗震承载力的1.2倍 (C) 高宽比大于4的高层建筑,在地震作用下基础底面不宜出现拉应力 (D) 高宽比不大于4的高层建筑及其他建筑,基础底面与地基土之间零应力区面积不应超

过基础底面积的25%

【4.3.1】 下述对液化土的判别的表述中,( A,B,C )是正确的。 (A) 液化判别的对象是饱和砂土和饱和粉土 (B) 一般情况下6度烈度区可不进行液化判别

(C) 6度烈度区的对液化敏感的乙类建筑可按7度的要求进行液化判别 (D) 8度烈度区的对液化敏感的乙类建筑可按9度的要求进行液化判别

【4.3.2】 下述对抗震设防区建筑场地液化的叙述中,( D )是错误的 (A) 建筑场地存在液化土层对房屋抗震不利

(B) 6度抗震设防地区的建筑场地一般情况下可不进行场地的液化判别 (C) 饱和砂土与饱和粉土的地基在地震中可能出现液化 (D) 粘性土地基在地震中可能出现液化

可编辑范本

.

【4.3.3】在8度地震区,( C )需要进行液化判别。 (A)砂土 (B)饱和粉质黏土 (C)饱和粉土 (D)软弱粘性土

【4.3.4】存在饱和砂土或粉土的地基,其设防烈度除( A )外,应进行液化判别。 (A)6 (B)7 (C)8 (D)9 【4.3.5】进行液化初判时,下述说法正确的是( A ) (A) 晚更新世的土层在8度时可判为不液化土 (B) 粉土黏粒含量为12%时可判为不液化土

(C) 地下说为以下土层进行液化初判时,不受地下水埋深的影响 (D) 当地下水埋深为0时,饱和砂土为液化土

【4.3.6】对饱和砂土或粉土(不含黄土)进行初判时,下述说法不正确的是( A )。 (A) 地质年代为第四纪晚更新世Q3,设防烈度为9度,判为不液化 (B) 8度烈度区中粉土的黏粒含量为12%时,应判为液化 (C) 7度烈度区中粉土的黏粒含量为12%时,应判为不液化

(D) 8度烈度时粉土场地的上覆非液化土层厚度为6.0m,地下水位埋深为2.0m,基础埋

深为1.5m,该场地应考虑液化影响

【5.1.1】地震作用大小的确定取决于地震影响系数曲线,地震影响系数曲线与( B )无关。 (A) 建筑结构的阻尼比 (B) 结构自重 (C) 特征周期值

(D) 水平地震影响系数最大值 2我国《建筑抗震设计规范》所给出的地震影响系数曲线中,结构自振周期的范围是( C )。 (A)0~3s (B)0~5s (C)0~6s (D)0~4s 【5.1.3】在计算8、9度罕见地震时,建设场地的特征周期应( C )。 (A)增加0.1s (B)减少0.1s (C)增加0.05s (D)减少0.05s

【5.1.4】北京市市区拟建一幢房屋,场地为Ⅱ类。其设计基本地震加速度,设计特征周期Tg(s),应为( C )

(A)0.20g、0.25s (B)0.15g、0.25s (C)0.20g、0.35s (D)0.15g、0.35s

【5.1.5】某多层钢筋混凝土框架结构,建筑场地类别为Ⅰ1类,抗震设防烈度为8度,设计地震分组为第二组。计算罕遇作用时的特征周期Tg(s)应取( B )。 (A)0.30 (B)0.35 (C)0.40 (D)0.45 【5.1.6】一幢20层的高层建筑,采用钢筋混凝土结构。该建筑地抗震设防烈度为8度(0.3g),场地类别为Ⅱ类,设计地震分组为第一组。该结构的自振周期T1=1.2s,阻尼比ξ=0.05,地震影响系数α与( A )最接近。

(A)0.0791 (B)0.070 (C)0.060 (D)0.050

【5.1.7】某框架剪力墙结构房屋,丙类建筑,场地为Ⅰ1类,设防烈度为7度,设计地震分组为第一组,设计基本地震加速度为0.15g。基本自振周期为1.3s。多遇地震作用时,其水平地震影响系数α与( A )最接近。

(A)0.028 (B)0.027 (C)0.026 (D)0.15 【5.1.8】一幢5层的商店建筑,其抗震设防烈度为8度(0.2g),场地为Ⅲ类,设计地震分组为第一组,该建筑采用钢结构,结构自振周期为T1=0.4s,阻尼比ξ=0.035,该钢结构的地震影响系数α是( A )。

(A)0.18 (B)0.16 (C)0.20 (D)0.025

可编辑范本

.

【5.1.9】某20层的高层建筑,采用钢框架-混凝土结构。该建筑地抗震设防烈度为8度(0.3g),场地类别为Ⅱ类,设计地震分组为第一组。结构的第一平动自振周期T1=1.2s,,地震影响系数α与( B )最接近。

(A)0.0791 (B)0.0826 (C)0.0854 (D)0.0778

例【5.3.1】高度不超过40m。以剪切变形为主且质量和刚度沿高度分布比较均匀的高层建筑结构地震作用计算时为了简化计算可采用( C )方法。 (A) 时程分析法 (B) 振型分解反应谱法 (C) 底部剪力法

(D) 先用振型分解反应谱法计算,再以时程分析法作补充计算 【5.3.1】 计算地震作用时,重力荷载代表值应取( C )

(A)结构和构配件自重标准值 (B)各可变荷载组合值 (C) (A) + (B) (D)(A) 或(B)

【5.3.2】某多层钢筋混凝土框架结构,建筑场场地为Ⅰ1类,设计地震分组为第二组时,特征周期为0.30s,计算8度罕遇地震作用时的特征周期Tg(s)应取( B ) (A)0.30 (B)0.35 (C)0.40 (D)0.45

【5.3.3】当采用底部剪力法计算多遇地震水平地震作用时,特征周期Tg=0.30s,顶部附加水平地震作用标准值ΔFn=δnFEk,当结构基本自振周期T1=1.30s时,顶部附加水平地震作用系数δn应与( A )最为接近。

(A)0.17 (B)0.11 (C)0.08 (D)0.0

【5.3.4】某框架结构的基本自振周期T1=1.0s,结构总重力荷载代表值GE=40000kN,设计地震基本加速度0.30g,设计地震分组为第二组,Ⅰ1类场地,8度设防。按底部剪力法计算的多遇地震作用下结构总水平地震作用标准值FEk (kN)与( C )最接近。 (A)2165 (B)3250 (C)2761 (D)1891

【5.3.5】单层钢筋混凝土框架如图所示,集中于屋盖处的重力荷载代表值G=1200kN,梁的抗弯刚度EI=∞,场地为Ⅱ类,7度设防烈度,设计基本地震加速度为0.10g,设计地震分组为第二组。经计算知基本自振周期T1=0.88s。在多遇地震作用下,框架的水平地震作用标准值(kN),与( A )最接近。

(A)46.80 (B)48.50 (C)49.60 (D)59.40

计算【5.3.6】如图所示,某二层钢筋混凝土框架结构,集中于楼盖和屋盖处的重力荷载代表值G1=G2=1200kN,梁的刚度EI=∞,场地为Ⅱ类,7度设防烈度,设计地震分组为第二组,设计基本地震加速度为0.10g。该结构基本自振周期T1=1.028s。多遇地震作用下,第一层、第二层楼层地震剪力标准值(kN),与( B )最接近。

(A)69.36;46.39 (B)69.36;48.37 (C)69.36;40.39 (D)69.36;41.99

【5.4.2】一幢20层的钢筋混凝土框架-核心筒结构如图所示。其抗震设防烈度为8度(0.3g),结构自振周期T1=1.8s。该结构的总重力荷载代表值

?G=392000kN。其水平地震作用采

jj=120用振型分解反映普法进行计算。算得底部总剪力 标准值VEk0=11760kN。由此,可算得底部

Gj。此λ值为( A ) 剪力系数?=VEk0/(A)0.03 j=1 (B)0.04 (C)0.02 (D)0.05

可编辑范本

?20.

【5.4.5】某10层现浇钢筋混凝土框架结构,该结构顶部增加突出小屋(第11层水箱间)为丙类建筑,抗震设防烈度为8度,设计基本地震加速度为0.20g。已知:10层(层顶质点)的水平地震作用标准值F10=682.3kN,第11层(层顶质点)的水平地震作用标准值F11=85.3kN,第10层的顶部附加水平地震作用标准值为ΔF10=910.7kN。试问,采用底部剪力法计算时,顶部突出小屋(第11层水箱间)以及第10层的楼层水平地震剪力标准值VFEk11(kN)和VFEk10(kN),分别与( B )最为接近。

(A)VFEk11=85,VFEk10=1680 (B)VFEk11=256,VFEk10=1680 (C)VFEk11=996,VFEk10=1680 (D) VFEk11=256,VFEk10=1850

【5.4.6】某十层现浇钢筋混凝土框架-剪力墙房屋,质量和刚度沿竖向分布均匀。房屋高度为40m,设一层地下室,采用箱形基础。该工程为丙类建筑,抗震设防烈度为9度,Ⅲ类建筑场地,设计地震分组为第一组,按刚性地基假定确定的结构基本自振周期为0.8s。各层重力荷载代表值相同。按刚性地基假定计算的水平地震剪力,若呈倒三角分布,如图所示,当计入地基与结构动力相互作用的影响时,试问、折减后的底部总水平地震剪力,应为( C )。 (提示:各层水平地震剪力折减后满足重比要求)。

(A)2.95F (B)3.95F (C)4.95F (D)5.95F 【5.5.1】下列关于扭转耦联效应的叙述中,( B )是错误的。

(A) 对质量和刚度分布明显不对称的结构,应计入双向水平地震作用下地扭转影响 (B) 对质量和刚度分布明显对称的结构,可以不考虑扭转耦联效应 (C) 对于任何结构的抗震设计,都要考虑扭转耦联效应的措施 (D) 采用底部剪力法计算地震作用的结构,可以不进行扭转耦联计算,但是对其平行于地

震作用的边榀的地震效应,应乘以增大系数

【5.5.2】对位于7度抗震设防区、Ⅱ类建筑场地、110m高,房屋平面及其结构布置均匀、对称、规则,且房屋质量和其结构的侧向刚度沿高度分布较均匀的丙类钢筋混凝土框架-剪力墙办公楼。在进行水平地震作用计算时,( D )计算方法适合。 (A) 可采用底部剪力法

(B) 可采用不考虑扭转影响的振型分解反应谱法

(C) 应采用考虑扭转耦联振动影响的振型分解反应谱法 (D) 应采用考虑扭转耦联振动影响的振型分解反应谱法,并用弹性时程分析法进行多遇地

震作用下的补充计算。

例【5.6.1】下列高层建筑中,地震作用计算时( A )宜采用时程分析法进行补充计算。 (Ⅰ).建筑设防类别为甲类的高层建筑结构

(Ⅱ).设防烈度为8度,Ⅲ类场地上高度大于60m的高层建筑结构 (Ⅲ). 设防烈度为7度,高度不大于80m的丙类高层建筑结构 (Ⅳ).刚度与质量沿竖向分布特别不均匀的高层建筑 (A)(Ⅰ)、(Ⅳ) (B)(Ⅱ)、(Ⅲ) (C)(Ⅰ)、(Ⅱ) (D)(Ⅲ)、(Ⅳ)

【5.6.1】7度设防地区采用时程分析法的房屋高度范围( A )

(A)>100m (B)>80m (C)>120m (D)>60m

2,下列对于钢筋混凝土高层建筑结构动力时程分析的集中观点,其中( B )相对准确。 (A) 楼层竖向构件的最大水平位移大于该楼层平均值1.2倍的高度的高层建筑可不进行弹

性动力时程分析补充计算

(B) 选用的加速度时程曲线,其平均地震影响系数曲线与振型分解反应谱法所用的地震影

响系数曲线相比,在各个周期点上相差不大于20%

(C) 弹性时程分析时,每条时程曲线计算所得的结构底部剪力不应小于振型分解反应谱法

求得的底部剪力的80%

D、结构地震作用效应,可取多条时程曲线计算结果及振型分解反应谱法计算结果中的最大

可编辑范本

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4