移动机器人路径规划技术地地研究

实用标准文案

移动机器人路径规划技术研究

摘要: 研究移动机器人路径规划问题。针对传统移动机器人路径规划算法搜索时间长, 效率低, 寻优能力差等问题, 提出了一种基于粒子群算法的机器人路径规划方法。该方法首先采用神经网络描述机器人工作环境,在此基础上通过坐标变换建立新地图; 然后将机器人路径表示为粒子位置, 并以路径长度为粒子群的适应度值; 最后粒子之间的相互协作, 不断更新粒子位置和速度, 获得一条从起始点到目标点全局最优路径。在 MATLAB平台上对该方法进行了仿真, 实验结果表明, 基于粒子群的机器人路径规划方法提高了路径规划的计算效率和可靠性, 可应用于机器人的实时导航。 关键词: 移动机器人; 粒子群算法; 路径规划

0 引言

移动机器人是集环境感知、动态决策、行为控制与执行的多功能于一体的综合性系统 ,目前广泛应用于航空航天、军事侦查、安全医疗和家庭服务等行业. 移动机器人的研究涉及到许多领域 ,包括光学、机械、微电子、自动控制和人工智能等,由于其作业环境的复杂性 ,决定了路径规划技术在移动机器人研究中的重要地位. 本文系统的阐述了移动机器人路径规划技术的研究现状和发展趋势

1 路径规划

路径规划是移动机器人研究领域的核心问题之一。所谓路径规划是指移动机器人在有障碍物的工作环境中, 搜索一条从起始状态

精彩文档

到目标状态的最优或次最优路径, 使机器人在运动过程中能无碰撞地、安全绕过所有的障碍物, 同时所经过的路径较短。移动机器人路径规划方法可以分为全局路径规划和局部路径规划两种, 全局路径规划方法通常可以找到最优解,

但首先需要知道准确的全局环境信息。到目前为止, 针对全局路径规划问题, 国内外学者对其进行了大量的研究, 并相应产生了许多方法。传统的路径规划算法有人工势场法和可视图法等。人工势场法的基本思想是将机器人看成处于一个虚拟力场中的“点”, 规划目标点对机器人有吸引力, 机器人对障碍物有排斥力, 在吸引力和排斥力的合力决定机器人运动方向。该方法具有实时性好、计算量小的特点, 但由于在规划过程中存在陷

实用标准文案

阱区, 很容易导致规划失败。可视图算法的基本思想是首先根据障碍物几何特征将工作空间中的可行区域映射为一个加权图, 然后利用图搜索策略在这个空间进行搜索, 根据图搜索算法的完备性理论, 完全能够规划出最优路径, 但由于图搜索算法比较复杂,可视图算法有潜在的组合爆炸危险。因此, 这些方法自身都存在一定的缺陷, 使得路径搜索出现计算量过大、效率不高、寻优能力差等难题, 不能满足路径规划的计算效率和可靠性要求。近年来, 出现了一些启发式路径规划算法如遗传算法和神经网络算法, 并得到了广泛的应用。但是遗传算法和神经网络法都存在局部最优的缺点, 导致寻优的路径质量不可靠。为了提高了移动机器人路径规划性能, 进一步丰富路径规划的方法, 需要不断的引入新的算法。粒子群优化算法 ( particle swarm optimization algorithm, PSO)是一种模拟鸟群时示的仿生算法, 具有算法简洁、易于实现和鲁棒性好等优点, 对种群大小不敏感, 收敛速度快, 非常适合于实时性要求较高、复杂的移动机器人路径

精彩文档

规划求解问题。针对当前移动机器人路径规划求解问题中存在的一些问题, 将粒子群算法引入到路径规划中, 提出一种新的移动机器人路径规划算法。该方法将路径规划分为两步, 首先用自由空间法建立规划环境模型, 用图论方法寻求一条无碰次优路径, 然后用粒子群算法优化次优路径, 得全局最优路径。

2 全局路径规划

全局路径规划 ,又称为静态或离线路径规划 ,作业的环境信息完全已知 ,主要方法有:栅格法、可视图法、链接图法、概率路径图法、拓扑法等. 2. 1 栅格法

栅格法是由 W. E. Hovcden 在 1968 年提出的. 栅格法将机器人的工作空间分解成一系列具有二值信息的网格单元 ,多数情况下采用四叉树或八叉树来表示 ,通过启发式优化算法搜索安全路径. 在栅格法中 ,栅格大小的选取将直接影响算法的性能. 栅格选的小 ,环境的分辨率就高 ,在密集障碍物

实用标准文案

或狭窄通道中发现路径的能力强 ,但环境信息的储存量大 ,规划时间长 ,降低了系统的实时性;栅格选的大了 ,环境信息储存量小,决策速度快 ,抗干扰能力强 ,但环境的分辨率低 ,在相应环境中发现路径的能力变差. 一般来说选定的栅格大小通常与机器人的移动步长相适应. 栅格法用栅格记录规划空间信息 ,其一致性和规范性使得空间中邻接关系简单化 ,在赋予环境中每个栅格一个通行因子后 ,路径规划问题就变成寻求两个栅格间最优路径问题. 常用的启发式搜索算法有 A 3 算法和 D 3 算法. 2. 2 可视图法

可视图法的基本思想是将机器人视为一点 ,然后把机器人起始点、目标点和多边形障碍物的所有顶点用线段进行组合连接. 如果起始点与障碍物顶点之间、目标点与障碍物顶点之间以及障碍物与障碍物顶点之间的线段不穿过障碍物 ,即称直线是可视的 ,如此生成的图称之为可视图. 由于可视图中所有线段均“可视”,所以搜索最优路径的问题就转化为通过这些“可视”的线段从

精彩文档

起始点到目标点最短距离的问题 ,还可以通过优化算法来删除一些不必要线段以简化视图 ,提高搜索效率. 用可视图法对移动机器人进行路径规划 ,由于忽略了机器人尺寸 ,易造成机器人通过障碍物时与障碍物的摩擦甚至碰撞,且该方法缺乏灵活性,不能解决障碍物为圆形的路径规划问题 ,也不适用于三维及以上空间. 2. 3 链接图法

链接图法用于移动机器人的路径规划基于以下两点假设:(1)移动机器人可视为在二维平面中运动 ,机器人用点来表示;(2)规划环境的边界及障碍物可用凸多边形描述.链接图的构造方法是:

1)依次连接所有障碍物顶点 ,做不与障碍物交叉的链接线 ,并删除一些没有必要的链接线 ,保证链接线与障碍物边界所围的每个自由空间是面积最大的凸边形.

2)设置各链接线的中点为可能的路径点 ,并将机器人的起始点和目标点链接到所有可能的路径点上.用链接图法进行路径规划具有灵活多变的特点 ,起始点和目标点的

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4