个人整理精品文档,仅供个人学习使用
0804 仪器科学与技术
一、学科简况
仪器科学与技术是一个多学科相互交叉和相互渗透的综合性新兴学科,它包含光电测试技术及仪器、测控技术及仪器、微型机械与纳M技术、智能仪器与虚拟仪器、测试理论与测试技术、误差理论与数据处理、现代传感技术与系统、故障诊断与信号分析、质量工程、惯性测试技术与控制、电磁测量技术与仪器等。
中北大学“仪器科学与技术学科”依托于“动态测试技术”国家重点实验室培育基地、“电子测试技术”国防科技重点实验室、“仪器科学与动态测试”教育部重点实验室、山西省重点基础性研究学科和山西省“动态测试技术”重点实验室、“微纳惯性传感及集成测量系统”教育部工程中心。该学科现有专职教师45名,其中教授17名,副教授15名,32名教师拥有博士学位。目前承担着国家级课题20余项、省部级课题60余项,科研项目的经费合计20XX余万元。学科下设精密仪器及机械、测试计量技术及仪器、微纳技术及仪器等研究方向,培育能独立从事教案、科研等工作的高级专门人才。 二、培养目标
本学科培养目标是全面深入仪器科学与技术学科坚实的基础理论和系统的专门知识及相关的实验技术,具备本学科的科学研究和技术开发能力,能够及时跟踪仪器科学与技术学科的国际前沿发展动态,在仪器科学与技术方向掌握坚实的基础理论和系统的专门知识,有一定的知识面和较强的自学能力,具有独立从事科学研究或担负专门技术工作的能力,熟练运用英语和计算机,有良好的人际交流沟通能力和良好的社会责任感,有较强的国际化视野和交叉学科的能力,具有一定的学术创新能力,可在本学科相关科研单位或研发部门等从事教案、科技研发和管理工作。 三、培养年限
学术型硕士生培养年限一般为3年。要求论文时间不少于1。5年,提前答辩和延期答辩要经过严格审批。 四、学科专业研究方向
1、080401精密仪器及机械 (1)微纳器件与系统集成
本方向以国家重大战略需求为牵引,重点针对超高温、超高压、超高过载冲击、高旋转、爆炸毁伤等特殊应用环境中测试应用需求,开展基于新材料、新结构、新效应的新型功能结构与器件研究。结合半导体超晶格的共振隧穿效应、高Q微腔和微纳机电传感探测技术,开展基于宽禁带半导体材料的纳M敏感结构及器件和以纳M光学与光学微
2 / 6
个人整理精品文档,仅供个人学习使用
腔微结构单元的新一代微光器件的研究;针对目前海洋环境中高分辨率水声成像声纳的核心器件及仪器设备展开研究,实现水下成像声纳的产业化,为我国海洋监测、海洋工程、海上军事作战、海洋科学研究等实际应用中对低成本、高可靠性水下成像声纳的产业化打下坚实的理论和技术支撑,能够为我国研制具有完全自主知识产权的高性能水声成像声纳奠定技术基础,同时能够促进我国MEMS技术在新领域中的应用。
(2)惯性测量与组合导航
该方向主要针对高速旋转以及高过载冲击等特种应用环境下对微小型、高可靠性MEMS 器件和系统集成技术的应用需求,开展微传感器、微执行器和微系统集成方面的基础理论、仿真设计、加工制造方法研究,重点解决MEMS器件在恶劣应用环境下的微小型化、系统集成化以及高可靠性等关键科学问题;以常规弹药的制导化应用为背景,以解决高速旋转弹药飞行姿态的高精度测量为切入点,通过对半捷联效应、半捷联模型与算法、高旋环境下的姿态测量与误差补偿技术、半捷联结构及制造技术、抗高过载微惯性测量组合集成与现场快速标定技术、三微化导航处理计算机技术等相关内容的探讨与研究,揭示半捷联惯性测量方法的内涵与本质,形成半捷联惯性测量的方法体系和应用能力,为高速旋转弹药飞行姿态精度测试问题的有效解决提供一种新的思路和技术途径。
(3)光电传感与系统集成
主要以光电子技术在微纳传感与精密测量领域的应用需求为背景,针对微电子技术向光电子技术发展过程中的前沿基础科学问题,重点开展微型光谐振腔物理与器件、微集成光电传感器、芯片集成光波导传感器及精密光电仪器的研究,解决MEMS与MOEMS加工过程的工艺兼容性问题,突破激光在微光波导中耦合与传输技术,实现多种物理量的高精度测量。针对激光投影显示中激光散斑无法彻底消除的“瓶颈”问题,开展激光散斑消除技术与微小型低成本散斑消除器件研究,重点解决低成本激光散斑消除技术为主的新原理和低成本的机理实现问题,完成微光机电散斑消除器件的加工与应用,实现激光显示的产业化。
(4)光电测试理论与技术
针对新型武器参数测试具有量值大、变化快、环境恶劣、不可重复、实验成本高、难以实现计量上的溯源等特点,建立温度、速度、激光信息综合探测平台,开展超高速多目标速度、形状、坐标、速度分布,超高温温度、温度场、窄脉冲激光综合参数信息等方面的高精度探测技术研究,提出新的测试原理、方案,建立兵器装备瞬态温度校准体系,研究可以在恶劣环境下工作的瞬态高温测试系统(>20XX℃,响应时间<1ms);突破传统测试技术的极限,为新武器的研发奠定技术基础,提供可靠的支撑手段。
2、080402测试计量技术及仪器 (1)恶劣环境动态测试
3 / 6
个人整理精品文档,仅供个人学习使用
主要研究武器系统动态参量测试技术,根据国防及工业部门的迫切需要,研究恶劣环境下的信息获取科学—动态测试的新概念即:“将测试系统直接放入被测体(各种机动车辆及其零部件、发射中的武器系统、飞行的弹丸及导弹、运载火箭、几千M深的石油井下等)内,或被测环境(爆炸场内、火炮膛内的环境、强电磁环境等)中,在被测对象实际运动的过程中实时实况地测取各种动态参数。”
(2)动态测试理论与校准技术
针对国防和民用工业中存在的动态测试问题与需求,研究非电量动态参量测试中的传感与信息获取方法;研究动态参量的测试、校准理论与技术;研究动态测试系统的特性分析、建模与修正方法以及测量不确定度的表示;研究动态测试数据的现代信号分析与处理方法。
(3)装备实验测试与系统
主要针对提高武器装备实验测试能力与实验测试水平的需求,开展装备的实验与测试技术的通用性技术研究。通过重点开展装备实验测试平台的架构与集成技术、虚拟测试环境与仿真、信息获取与处理技术、实验测试信息共享技术、目标模拟技术、基于FPGA的通用接口与仪器重构技术、ATML技术及应用等技术的研究,解决装备实验设备与测试仪器硬件融合、信息共享、数据融合问题,促进武器装备测试系统硬件和软件平台标准化、系列化和模块化的发展。
(4)现代检测技术与评估
将武器装备系统的自动化测试、可信性分析与性能评估融为一体,以航空航天等国防重点装备的研制、实验、生产和维护过程中的测试计量和仪器技术发展为需求,进行武器装备的智能化检测与可信性分析评估;以航空航天领域武器装备半实物仿真的动态加载技术作为突破口,进行扭矩/弯矩加载系统的结构设计、抑制多余力矩的先进控制策略、扭矩/转角测试技术和电机伺服控制技术等方面的研究;面向国防技术需求,利用嵌入式技术,研究适应装备研制、实验、生产等不同阶段的总线式通用测试环境的硬件板卡和测试平台,实现测试资源的通用化和标准化。基础理论研究与应用开发相结合,实现测试设备的智能化、集成化、通用化及便携化,促使相关研究成果在航空航天、工业过程等领域得到了推广应用。
(5)电子测试仪器与系统
针对飞行载体在发射、大气层再入、潜射出水、星箭分离、侵彻、着陆、水下寻的过程中无线电“黑障区”遥测系统无法获得测试数据的技术难题,开展动态实时数据压缩存储算法研究,解决恶劣环境下武器系统冲击、振动、温度、压力、工作状况等动态数据的获取问题;开展复合防护、多级缓冲、强化封装的抗高过载结构和防护措施研究,解决有限容量约束下飞行体飞行侵彻过程中非平稳动态参数的可靠记录问题;开展实时、大容量动态存储测试理论与技术研究,为深空探测、载人航天以及近地空间飞行器等国家重大工程和国防重点武器型号研制提供关键技术和核心器件。
4 / 6