第1章 绪论 内容提要:
◆ 数据结构研究的内容。
针对非数值计算的程序设计问题,研究计算机的操作对象以及它们之间的关系和操作。 数据结构涵盖的内容:
◆ 基本概念:数据、数据元素、数据对象、数据结构、数据类型、抽象数据类型。 数据——所有能被计算机识别、存储和处理的符号的集合。 数据元素——是数据的基本单位,具有完整确定的实际意义。
数据对象——具有相同性质的数据元素的集合,是数据的一个子集。
数据结构——是相互之间存在一种或多种特定关系的数据元素的集合,表示为: Data_Structure=(D, R)
数据类型——是一个值的集合和定义在该值上的一组操作的总称。
抽象数据类型——由用户定义的一个数学模型与定义在该模型上的一组操作, 它由基本的数据类型构成。
◆ 算法的定义及五个特征。
算法——是对特定问题求解步骤的一种描述,它是指令的有限序列,是一系列输入转换为输出的计算步骤。
算法的基本特性:输入、输出、有穷性、确定性、可行性
◆ 算法设计要求。
①正确性、②可读性、③健壮性、④效率与低存储量需求
◆ 算法分析。
时间复杂度、空间复杂度、稳定性
学习重点:
◆ 数据结构的“三要素”:逻辑结构、物理(存储)结构及在这种结构上所定义的操作(运算) 。
◆ 用计算语句频度来估算算法的时间复杂度。
第二章 线性表 内容提要:
◆ 线性表的逻辑结构定义,对线性表定义的操作。 线性表的定义:用数据元素的有限序列表示
◆ 线性表的存储结构:顺序存储结构和链式存储结构。
顺序存储定义:把逻辑上相邻的数据元素存储在物理上相邻的存储单元中的存储结构。 链式存储结构: 其结点在存储器中的位置是随意的,即逻辑上相邻的数据元素在物理上不一定相邻。通过指针来实现!
◆ 线性表的操作在两种存储结构中的实现。
数据结构的基本运算:修改、插入、删除、查找、排序
1) 修改——通过数组的下标便可访问某个特定元素并修改之。 核心语句: V[i]=x;
顺序表修改操作的时间效率是 O(1)
2) 插入——在线性表的第i个位置前插入一个元素 实现步骤:
①将第n至第i 位的元素向后移动一个位置; ②将要插入的元素写到第i个位置; ③表长加1。
注意:事先应判断: 插入位置i 是否合法?表是否已满? 应当符合条件: 1≤i≤n+1 或 i=[1, n+1] 核心语句:
for (j=n; j>=i; j--)
a[j+1]=a[ j ]; a[ i ]=x; n++;
插入时的平均移动次数为:n(n+1)/2÷(n+1)=n/2≈O(n) 3) 删除——删除线性表的第i个位置上的元素 实现步骤:
①将第i+1 至第n 位的元素向前移动一个位置; ②表长减1。
注意:事先需要判断,删除位置i 是否合法? 应当符合条件:1≤i≤n 或 i=[1, n] 核心语句:
for ( j=i+1; j<=n; j++ )
a[j-1]=a[j]; n--;
顺序表删除一元素的时间效率为:T(n)=(n-1)/2 ≈O(n) 顺序表插入、删除算法的平均空间复杂度为O(1)
单链表: (1)
用单链表结构来存放26个英文字母组成的线性表(a,b,c,?,z),请写出C语言程序。 #include
struct node *next; }node;
node *p,*q,*head; //一般需要3个指针变量 int n ; // 数据元素的个数
int m=sizeof(node); /*结构类型定义好之后,每个node类型的长度就固定了, m求一次即可*/
void build( ) //字母链表的生成。要一个个慢慢链入 {
int i;
head=(node*)malloc(m); //m=sizeof(node) 前面已求出 p=head;
for( i=1; i<26; i++) //因尾结点要特殊处理,故i≠26 {
p->data=i+‘a’-1; // 第一个结点值为字符a p->next=(node*)malloc(m); //为后继结点“挖坑”!
p=p->next;} //让指针变量P指向后一个结点 p->data=i+‘a’-1; //最后一个元素要单独处理
p->next=NULL ; //单链表尾结点的指针域要置空! } }
void display() //字母链表的输出 {
p=head;
while (p) //当指针不空时循环(仅限于无头结点的情况) { printf(\ p=p->next; //让指针不断“顺藤摸瓜” } }
(2)单链表的修改(或读取)
思路:要修改第i个数据元素,必须从头指针起一直找到该结点的指针p, 然后才能:p>data=new_value 读取第i个数据元素的核心语句是: Linklist *find(Linklist *head ,int i) {
int j=1;
Linklist *p; P=head->next;
While((p!=NULL)&&(j
p=p->next; j++; }
return p; }
3.单链表的插入
链表插入的核心语句: Step 1:s->next=p->next; Step 2:p->next=s ;
6.单链表的删除
删除动作的核心语句(要借助辅助指针变量q):
q = p->next; //首先保存b的指针,靠它才能找到c; p->next=q->next; //将a、c两结点相连,淘汰b结点; free(q) ; //彻底释放b结点空间
7.双向链表的插入操作:
设p已指向第 i 元素,请在第 i 元素前插入元素 x: ① ai-1的后继从 ai ( 指针是p)变为 x(指针是s) : s->next = p ; p->prior->next = s ; ② ai 的前驱从 ai-1 ( 指针是p->prior)变为 x ( 指针是s); s->prior = p ->prior ; p->prior = s ;