平行四边形
1、(德阳市2018年)如图.在ABCD中,AB=6、AD=9,∠BAD的平分线交BC于点E,DC的延长线于点F, BG⊥AE,垂足为G,若BG=42,则△CEF的面积是 A、22 B、2 C、32 D、42 答案:A
解析:∵在?ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,
∴∠BAF=∠DAF,∵AB∥DF,∠BAF=∠F,∴∠F=∠DAF, ∴△ADF是等腰三角形,AD=DF=9;∵AB=CD=6, ∴CF=3; ∠BEA=∠DAF=∠BAF,所以,BA=BE,
∴在△ABG中,BG⊥AE,AB=6,BG=42 可得:AG=2, 又∵BG⊥AE,∴AE=2AG=4,∴△ABE的面积等于82,
又∵?ABCD,∴△CEF∽△BEA,相似比为1:2,面积1:4,∴△CEF的面积为,22. 2、(2018杭州)在?ABCD中,下列结论一定正确的是( )
A.AC⊥BD B.∠A+∠B=180° C.AB=AD D.∠A≠∠C 考点:平行四边形的性质.
分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°. 解答:解:∵四边形ABCD是平行四边形, ∴AD∥BC,
∴∠A+∠B=180°. 故选B.
点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用. 3、(2018?内江)如图,在?ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=( )
A. 2:5 B. 2:3 C. 3:5 D. 3:2 1
考点:相 似三角形的判定与性质;平行四边形的性质. 分析:先 根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:10:25即可得出其相似比,由相似三角形的性质即可求出 DE:EC的值,由AB=CD即可得出结论. 解答:解 :∵四边形ABCD是平行四边形, ∴AB∥CD, ∴∠EAB=∠DEF,∠AFB=∠DFE, ∴△DEF∽△BAF, ∵S△DEF:S△ABF=4:25, ∴DE:AB=2:5, ∵AB=CD, ∴DE:EC=2:3. 故选B. 点评:本 题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键. 4、(2018?自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为( )
A. 11 C. 9 D. 8 考点:相 似三角形的判定与性质;勾股定理;平行四边形的性质. 分析:判 断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长. 解答:解 :∵在?ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E, ∴∠BAF=∠DAF, ∵AB∥DF,AD∥BC, ∴∠BAF=∠F=∠DAF,∠BAE=∠AEB, ∴AB=BE=6,AD=DF=9, ∴△ADF是等腰三角形,△ABE是等腰三角形, ∵AD∥BC, ∴△EFC是等腰三角形,且FC=CE, ∴EC=FC=9﹣6=3, 在△ABG中,BG⊥AE,AB=6,BG=4, ∴AG==2, B. 10 ∴AE=2AG=4, ∴△ABE的周长等于16, 又∵△CEF∽△BEA,相似比为1:2, 2