六年级数学-六年级数学提升—易错难点综合训练题含答案

六年级数学-六年级数学提升—易错难点综合训练题含答案

一、培优题易错题

1.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表

示).

【答案】55;(n+1)2+n

【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;

第3个图形共有小正方形的个数为4×4+3; …;

则第n个图形共有小正方形的个数为(n+1)2+n, 所以第6个图形共有小正方形的个数为:7×7+6=55. 故答案为:55;(n+1)2+n

【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.

2.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘 数”.如:4=22-02 , 12=42-22 , 20=62-42 , 因此4,12,20这三个数都是神秘数.

(1)28和2012这两个数是神秘数吗?为什么?

(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?

(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?

【答案】(1)解:找规律:4=4×1=22-02 , 12=4×3=42-22 , 20=4×5=62-42 , 28=4×7=82-62 , …,2012=4×503=5042-5022 , 所以28和2012都是神秘数

(2)解:(2k+2) 2-(2 k) 2=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数 (3)解:由(2)知,神秘数可以表示成4(2k+1),因为2 k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数.另一方面,设两个连续奇数为2 n +1和2 n -1,则(2 n +1) 2-(2n-1) 2=8n,即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘数.

【解析】【分析】(1)根据规律得到28=4×7=82-62 , 2012=4×503=5042-5022 , 得到28和2012这两个数是神秘数;

(2)由(2k+2) 2-(2k) 2=(2k+2+2k)(2k+2-2k)=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数;

(3)神秘数可以表示成4(2k+1),因为2k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数;两个连续奇数的平方差是8的倍数,因此这两个连续奇数的平方差不是神秘数.

3.下列图表是 2017 年某校从参加中考体育测试的九年级学生中随机调查的 10 名男生跑 1000 米和 10 名女生跑 800米的成绩.

(1)按规定,女生跑 800 米的时间不超过 3'24\就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。 若能,求出发多长时间才能相遇;若不能,说明理由. 【答案】(1)解:设男生有x人,女生有(x+70)人, 由题意得:x+x+70=490, 解得:x=210,

则女生x+70=210+70=280(人). 故女生得满分人数: (2)解:不能;

假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:

解得 又∵

(人)

∴考生1号与10号不能相遇。

【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根据题意表达出1号跟10号的速度,两位若相遇,相减的路程为400米,得出的时间为4.8, 但是4.8分钟大于3分钟,所以两位在测试过程中不会相遇。

4.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.

(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________; (2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8 ①第几次滚动后,小圆离原点最远?

②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)

(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数. 【答案】(1)-4π

(2)解:①第1次滚动后,|﹣1|=1, 第2次滚动后,|﹣1+2|=1, 第3次滚动后,|﹣1+2﹣4|=3, 第4次滚动后,|﹣1+2﹣4﹣2|=5, 第5次滚动后,|﹣1+2﹣4﹣2+3|=2, 第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10, 则第6次滚动后,小圆离原点最远; ②1+2+4+3+2+8=20, 20×π=20π,

﹣1+2﹣4﹣2+3﹣8=﹣10,

∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π

(3)解:设时间为t秒, 分四种情况讨论: i)当两圆同向右滚动,

由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt, 小圆与数轴重合的点所表示的数为:πt, 2πt﹣πt=6π, 2t﹣t=6, t=6,

2πt=12π,πt=6π,

则此时两圆与数轴重合的点所表示的数分别为12π、6π. ii)当两圆同向左滚动,

由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt, 小圆与数轴重合的点所表示的数:﹣πt,

﹣πt+2πt=6π, ﹣t+2t=6, t=6,

﹣2πt=﹣12π,﹣πt=﹣6π,

则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π. iii)当大圆向右滚动,小圆向左滚动时, 同理得:2πt﹣(﹣πt)=6π, 3t=6, t=2,

2πt=4π,﹣πt=﹣2π,

则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π. iiii)当大圆向左滚动,小圆向右滚动时, 同理得:πt﹣(﹣2πt)=6π, t=2,

πt=2π,﹣2πt=﹣4π,

则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π

【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π?2=﹣4π, 故答案为:﹣4π;

【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.

5.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6

(1)收工时,检修小组在A地的哪一边,距A地多远?

(2)若汽车每千米耗油3升,已知汽车出发时油箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?

【答案】(1)解:+15+(-2)+5+(-1)+(-10)+(-3)+(-2)+12+4+(-5)+6 =19(km), 答:检修小组在A地东边,距A地19千米

(2)解:(+15+|-2|+5+|-1|+|-10|+|-3|+|-2|+12+4+|-5|+6)×3 =65×3=195(升),∵195>180, ∴收工前需要中途加油, 195-180=15(升), 答:应加15升.

【解析】【分析】(1)先求出这组数的和,如为正则在A的东边,为负则在A的西边,

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4