有关抛物线焦点弦问题的探讨
过抛物线y?2px(p>0)的焦点F作一条直线L和此抛物线相交于A(x1,y1)、B(x2,y2)两点
2
结论1:AB?x1?x2?p
pp)?(x2?)?x1?x2?p 222p结论2:若直线L的倾斜角为?,则弦长AB?
sin2?AB?AF?BF?(x1?证: (1)若??(2)若???2 时,直线L的斜率不存在,此时AB为抛物线的通径,?AB?2p?结论得证
?2时,设直线L的方程为:y?(x?pp)tan?即x?y?cot?? 代入抛物线方程得22y2?2py?cot??p2?0由韦达定理y1y2??p2,y1?y2?2pcot?
由弦长公式得AB?1?cot2?y1?y2?2p(1?cot2?)?2p 2sin?结论3: 过焦点的弦中通径长最小
?sin2??1?2p?2p ?AB的最小值为2p,即过焦点的弦长中通径长最短. 2sin?S2?oABp3结论4: ?(为定值)
AB81
11OF?BF?sin??OF?AF?sin?22111p2pp2?sin?? ?OF??AF?BF?sin??OF?AB?sin????
2222sin2?2sin?2S?P3OAB??AB8S?OAB?S?OBF?S?0AF?p2结论5: (1) y1y2??p (2) x1x2=
42y1y2(y1y2)2P2证?x1? ,x2?,?x1x2??22p2p44P22结论6:以AB为直径的圆与抛物线的准线相切
证:设M为AB的中点,过A点作准线的垂线AA1, 过B点作准线的垂线BB1, 过M点作准线的垂线MM1,由梯形的中位线性质和抛物线的定义知 MM1?AA1?BB12?AF?BF2?AB2 故结论得证
结论7:连接A1F、B1 F 则 A1F?B1F
?AA1?AF,??AA1F??AFA1?AA1//OF??AA1F??A1FO??A1FO??A1FA
同理?B1FO??B1FB??A1FB1?90? ?A1F?B1 F 结论8:(1)AM1?BM1 (2)M1F?AB (3)M1F2?AF?BF
(4)设AM1 与A1F相交于H ,M1B与 FB1相交于Q 则M1,Q,F ,H四点共圆 (5)AM12?M1B?4M1M
22证:由结论(6)知M1 在以AB为直径的圆上? AM1?BM1
??A1FB1为直角三角形, M1 是斜边A1 B1 的中点
?A1M1?M1F??M1FA1??M1A1F??AA1F??AFA1??AA1F??FA1M1??AA1M1?90? ??AFA1??A1FM1?90?
?M1F?AB
2
?M1F?AF?BF ? AM1?BM1 ??AM1B?90?又?A1F?B1F
??A1FB1?90? 所以M1,Q,F,H四点共圆,AM1 ?AF?BF2?M1B?AB
222????AA21?BB1???2MM1??4MM1
22结论9: (1)A、O、B1 三点共线 (2)B,O,A1 三点共线
(3)设直线AO与抛物线的准线的交点为B1,则BB1平行于X轴
(4)设直线BO与抛物线的准线的交点为A1,则AA1平行于X轴
2
证:因为koA?y1yy2y2p?12?,koB1?2??2,而y1y2??p2
px1y1py1?22p2y22p(3)(4) ???koB1所以三点共线。同理可征(2)2p?py2所以koA?结论10:
112?? FAFBp证:过A点作AR垂直X轴于点R,过B点作BS垂直X轴于点S,设准线与x轴交点为
? E,因为直线L的倾斜角为则ER?EF?FR?P?AFcos??AF?AF?11?cos?P? ? AFP1?cos?同理可得
11?cos?112??? ?BFPFAFBp结论11:
AFAE? (3) KAE?KBE?0 (1) 线段 EF平分角?PEQ (2)BFBE(4) 当? ??2时 AE?BE , 当? ??2时 AE不垂直于BE 证:?BB1//EF//AA1?B1EEA1?BFFA?BF?B1B,FA?A1A?B1EEA1?B1BA1A
??AA1E??BB1E?90???A1EA相似于?B1EB ??A1EA=?B1EB
??AEF+?A1EA=?BEF+?B1EB=90???AEF=?BEF即EF平分角?PEQ
?AFBF?AEBE ?直线AE和直线BE关于X轴对称?KAE+KBE=0
(4)当? ? 当???2时,AF=EF=FB ??AEB=90?
??p?时,设直线L的方程为y?k?x-? 将其代入方程y2?2px 2?2?22k2p2pk2?2 得kx-p(k?2)x??0 设A(x1,y1),B(x2,y2) 则x1?x2? 24k2??p21 ?x1x2= 假设AE?BE则 KAE?KBE=-4y1ppx1?x2?22?y2??1
3