有限元基础课程学习总结

有限元基础理论学习总结报告

中国矿业大学(北京)14级硕士 王 涛

通过课上和课下的学习,对有限元基础理论有了一定的了解和认识。经过学习,更加深刻的理解了有限元的离散、单元类型、插值函数构造和等参变换等知识,现对有限元的基本理论和用法做了如下学习和报告。

已经发展的偏微分方程数值分析方法可以分为两大类。一类是有限差分法,其特点是直接求解基本方程和相应定解条件的近似解,求解步骤归纳为:首先将求解域划分为网格,然后在网格的节点上用差分方程来近似微分方程。借助于有限差分法能够求解相当复杂的问题,特别是求解方程建立于固结在空间的坐标系(Euler坐标系)的流体力学问题,有限差分法有自身的优势,因此在流体力学领域内,至今仍占支配地位。但是对于固体结构问题,由于方程通常建立于固结的物体上的坐标系(Lagrange坐标系)和形状复杂,另一类数值分析方法——有限元法则更为合适。

有限差分法:

特点:以差分方程近似微分方程,直接数值求解原问题的微分方程,

在流体力学,岩土力学领域占重要地位。

有限元法:

特点:区别于有限差分法,即不是直接从问题的微分方程和相应的定

解条件出发,而是从等效的积分形式出发,数值求解原问题的等效积分方程。

基本思想:1 将求解域离散为有限个子域(单元)的集合 2 分片逼近待求函数

分析过程:1 单元特性分析,单元节点位移与节点力之间的关系 2 系统特性分析,将单元刚度矩阵集成整体刚度方程

1. 有限元法的理论基础——加权余量法和变分原理

1.1 微分方程的等效积分形式和加权余量法 1.1.1 微分方程的等效积分形式

工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件形式提出来的,可以一般地表示为未知函数应满足微分方程组

A(u)?0(在Ω内) (1.1.1) 域Ω可以是体积域、面积域等。同时未知函数还应满足边界条件

B(u)?0(在Г内) (1.1.2)

Г是域Ω的边界。

由于微分方程组(1.1.1)在域Ω中每一点都必须为零,因此就有

???TA(?)d????(?1A1(?)??2A2(?)?...)d??0 (1.1.3)

其中

是函数向量,它是一组和微分方程个数相等的任意函数。(1.1.3)式与微分方程组(1.1.1)式是完全等效的积分形式。同理,加入边界条件(1.1.2)也同时在边界上每一点都得到满足,则其等效积分形式(微分方程)为

???A(?)d?????B(?)d??0 (1.1.5)

TT对(1.1.5)分部积分得到等到另一种形式

??CT(?)D(?)d????E(?)F(?)d??0 (1.1.6)

其中C、D、E、F是微分算子,它们中包含的阶数较(1.1.5)式的A低,这样对函数只需要求较低阶的连续性就可以了。在(1.1.6)式中降低的连续性要求是以提高?和?的连续性要求为代价的。这种通过适当提高对任意函数?和?的连续性要求,以降低对微分方程场函数的连续性要求所建立的等效积分形式称为

微分方程的等效积分“弱”形式。

1.1.2 基于等效积分形式的近似方法——加权余量法

对微分方程(1.1.1)式和边界条件(1.1.2)式所表达的物理问题,假设未知场函数可以采用近似函数来表示。近似函数是一族带有待定参数的已知函数,一般形式是

?????Niai?Na (1.1.7)

>>闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳婀遍埀顒傛嚀鐎氼參宕崇壕瀣ㄤ汗闁圭儤鍨归崐鐐差渻閵堝棗绗掓い锔垮嵆瀵煡顢旈崼鐔蜂画濠电姴锕ら崯鎵不缂佹﹩娈介柣鎰綑閻忔潙鈹戦鐟颁壕闂備線娼ч悧鍡涘箠閹伴偊鏁婂┑鐘插€甸弨浠嬪箳閹惰棄纾归柟鐗堟緲绾惧鏌熼幆褍顣虫俊顐灦閺岀喖顢涢崱妤冪伇闁告艾顑夊娲传閸曨厾鍔圭紓鍌氱С缁舵岸鎮伴鈧畷鍫曨敆婢跺娅栭梻浣瑰缁诲倸螞瀹€鍕闁告侗鍠氱弧鈧梺姹囧灲濞佳勭濠婂嫪绻嗘い鏍ㄧ啲閺€鑽ょ磼閸屾氨孝妤楊亙鍗冲畷鐓庘攽閸偅袨闂傚倷绶氶埀顒傚仜閼活垱鏅堕濮愪簻妞ゅ繐瀚弳锝呪攽閳ュ磭鍩g€规洖宕灃闁逞屽墲閵嗘牜绱撻崒姘偓鎼佸磹閸濄儳鐭撻柡澶嬪殾濞戞鏃堝焵椤掑嫭鍋濆┑鐘宠壘闁裤倖淇婇妶鍕槮濞存粍绮撳铏圭矙鐠恒劎顔囬梺姹囧妿閸忔﹢鐛箛娑欐優闁革富鍘鹃敍婊呯磽閸屾瑩妾烽柛銊ョ秺閻涱噣寮介鐔哄幍闂佸憡鍔樼亸娆戠不濞差亝鐓忛柛銉e妼婵本銇勯敃鈧顓犳閹烘挻缍囬柕濞垮劜鐠囩偤姊虹拠鈥虫灀闁哄懐濮撮悾宄邦潨閳ь剟骞婇悩娲绘晞闁圭ǹ楠告禍婵堢磽閸屾艾鈧悂宕愭搴㈩偨闁跨喓濮寸粣妤呮煛瀹ュ骸骞楅柛瀣儔閺岀喖骞嗚閿涘秹鏌¢崱顓犵暤闁哄瞼鍠栭幃婊冾潨閸℃ḿ鏆﹂梻浣呵归敃锕傚礂濮椻偓楠炲啫螖閸涱喖浠洪梺璋庡棭鍤欐繝鈧柆宥呮瀬妞ゆ洍鍋撴鐐叉椤︻噣鏌¢埀顒佺鐎n偆鍘藉┑鈽嗗灥濞咃絾绂掑☉銏$厸闁糕€崇箲濞呭懘鏌嶇憴鍕伌妞ゃ垺鐟ч崰濠囧础閻愭惌鍟€闂傚倷鑳堕幊鎾剁不瀹ュ鍨傜痪顓炴噽娴滆棄鈹戦悙瀛樺鞍闁告垵缍婂畷褰掑箮閽樺鍔﹀銈嗗笒閸燁偊鎮¢幇鐗堢厪闁搞儜鍐句純閻庢鍠楀ḿ娆掔亙闂侀€炲苯澧紒鍌氱У閵堬綁宕橀埞鐐闂備礁鎲$换鍌溾偓姘煎櫍閹偟鎹勯妸褏锛滈梺鍝勮閸庢娊鎮鹃悜姗嗘闁绘劕寮堕ˉ銏⑩偓娈垮櫘閸o絽鐣锋總鍓叉晝闁挎繂妫欓悵顐⑩攽閻樺灚鏆╅柛瀣仱瀹曞綊宕奸弴鐔告珖闂佸啿鎼崐鎼侇敋闁秵鐓ラ柣鏇炲€圭€氾拷<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4