中考数学考点及分值

学习必备 欢迎下载

如果自变量的取值范围是x1?x?x2,那么,首先要看?b是否在自变量取值范围x1?x?x2内,若2ab4ac?b2在此范围内,则当x=?时,y最值?;若不在此范围内,则需要考虑函数在x1?x?x2范

2a4a2围内的增减性,如果在此范围内,y随x的增大而增大,则当x?x2时,y最大?ax2当x?x1?bx2?c,

22时,y最小?ax1如果在此范围内,y随x的增大而减小,则当x?x1时,y最大?ax1?bx1?c;?bx1?c,2当x?x2时,y最小?ax2?bx2?c。

补充:

1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法) y 如图:点A坐标为(x1,y1)点B坐标为(x2,y2) 则AB间的距离,即线段AB的长度为?x1?x2???y1?y2? A

0 x B 2、函数平移规律(中考试题中,只占3分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间) 左加右减、上加下减

22第八章 图形的初步认识

考点一、直线、射线和线段 (3分)

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。 平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。 2、点、线、面、体 (1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、直线的概念 一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。 4、射线的概念 直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。 5、线段的概念

直线上两个点和它们之间的部分叫做线段。这两个点叫做线段的端点。 6、点、直线、射线和线段的表示 在几何里,我们常用字母表示图形。 一个点可以用一个大写字母表示。 一条直线可以用一个小写字母表示。

一条射线可以用端点和射线上另一点来表示。 一条线段可用它的端点的两个大写字母来表示。 注意:(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。

(2)直线和射线无长度,线段有长度。 (3)直线无端点,射线有一个端点,线段有两个端点。 (4)点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。 ②点在直线外,或者说直线不经过这个点。

学习必备 欢迎下载

7、直线的性质

(1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。(2)过一点的直线有无数条。(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。(4)直线上有无穷多个点。(5)两条不同的直线至多有一个公共点。

8、线段的性质 (1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。 (2)连接两点的线段的长度,叫做这两点的距离。 (3)线段的中点到两端点的距离相等。 (4)线段的大小关系和它们的长度的大小关系是一致的。 9、线段垂直平分线的性质定理及逆定理

垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

考点二、角 (3分)

1、角的相关概念

有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。 当角的两边在一条直线上时,组成的角叫做平角。

平角的一半叫做直角;小于直角的角叫做锐角;大于直角且小于平角的角叫做钝角。

如果两个角的和是一个直角,那么这两个角叫做互为余角,其中一个角叫做另一个角的余角。 如果两个角的和是一个平角,那么这两个角叫做互为补角,其中一个角叫做另一个角的补角。 2、角的表示

角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,具体的有一下四种表示方法: ①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。 ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。 3、角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。 把1’ 的角60等分,每一份叫做1秒的角,1秒记作“1””。 1°=60’=60” 4、角的性质

(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。 (2)角的大小可以度量,可以比较 (3)角可以参与运算。 5、角的平分线及其性质

一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。 角的平分线有下面的性质定理: (1)角平分线上的点到这个角的两边的距离相等。 (2)到一个角的两边距离相等的点在这个角的平分线上。

考点三、相交线 (3分) 1、相交线中的角

两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角。我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做临补角。

临补角互补,对顶角相等。

直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。其中∠1与∠5这两个角分别在AB,CD的上方,

学习必备 欢迎下载

并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。

2、垂线

两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

直线AB,CD互相垂直,记作AB⊥CD(或“CD⊥AB”),读作“AB垂直于CD”(或CD垂直于AB)。 垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。

性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。

考点四、平行线 (3~8分)

1、平行线的概念

在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。 同一平面内,两条直线的位置关系只有两种:相交或平行。 注意: (1)平行线是无限延伸的,无论怎样延伸也不相交。

(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。 2、平行线公理及其推论

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。 3、平行线的判定

平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。

平行线的两条判定定理:

(1)两条直线被第三条直线所截,如果内错角相等那么两直线平行。简称:内错角相等,两直线平行。 (2)两条直线被第三条直线所截,如果同旁内角互补那么两直线平行。简称同旁内角互补两直线平行。 补充平行线的判定方法:

(1)平行于同一条直线的两直线平行。(2)垂直于同一条直线的两直线平行。(3)平行线的定义。 4、平行线的性质(1)两直线平行,同位角相等。(2)两直线平行,内错角相等。 (3)两直线平行,同旁内角互补。

考点五、命题、定理、证明 (3~8分)

1、命题的概念判断一件事情的语句,叫做命题。理解:命题的定义包括两层含义: (1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。 2、命题的分类(按正确、错误与否分) 真命题(正确的命题) 命题

假命题(错误的命题)

所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。 所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

3、公理 人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。 4、定理 用推理的方法判断为正确的命题叫做定理。

5、证明 判断一个命题的正确性的推理过程叫做证明。

6、证明的一般步骤 (1)根据题意,画出图形(2)根据题设、结论、结合图形,写出已知、求证。 (3)经过分析,找出由已知推出求证的途径,写出证明过程。

考点六、投影与视图 (3分)

1、投影

投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。 平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。 中心投影:由同一点发出的光线所形成的投影称为中心投影。

2、视图 当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。物体的三视图特

学习必备 欢迎下载

指主视图、俯视图、左视图。

主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。 俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。

左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。

第九章 三角形

考点一、三角形 (3~8分)

1、三角形的概念

由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。 2、三角形中的主要线段

(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性

三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。 4、三角形的特性与表示 三角形有下面三个特性: (1)三角形有三条线段

(2)三条线段不在同一直线上 三角形是封闭图形 (3)首尾顺次相接

三角形用符号“?”表示,顶点是A、B、C的三角形记作“?ABC”,读作“三角形ABC”。 5、三角形的分类

三角形按边的关系分类如下: 不等边三角形

三角形 底和腰不相等的等腰三角形 等腰三角形

等边三角形 三角形按角的关系分类如下:

直角三角形(有一个角为直角的三角形)

三角形 锐角三角形(三个角都是锐角的三角形) 斜三角形

钝角三角形(有一个角为钝角的三角形)

把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。 推论:三角形的两边之差小于第三边。(2)三角形三边关系定理及推论的作用:

①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。③证明线段不等关系。 7、三角形的内角和定理及推论 三角形的内角和定理:三角形三个内角和等于180°。 推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。 ③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。 8、三角形的面积三角形的面积=

1×底×高 2学习必备 欢迎下载

考点二、全等三角形 (3~8分)

1、全等三角形的概念

能够完全重合的两个图形叫做全等形。

能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。 2、全等三角形的表示和性质

全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。 注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。 3、三角形全等的判定 三角形全等的判定定理:

(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”) (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”) (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。 直角三角形全等的判定:

对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”) 4、全等变换

只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种:

(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。

考点三、等腰三角形 (8~10分)

1、等腰三角形的性质

(1)等腰三角形的性质定理及推论:

定理:等腰三角形的两个底角相等(简称:等边对等角)

推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。 (2)等腰三角形的其他性质:

①等腰直角三角形的两个底角相等且等于45°

②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。 ③等腰三角形的三边关系:设腰长为a,底边长为b,则

b

180???A 22、等腰三角形的判定

等腰三角形的判定定理及推论:

定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。 推论1:三个角都相等的三角形是等边三角形

推论2:有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

等腰三角形的性质与判定

中线

等腰三角形性质

1、等腰三角形底边上的中线垂直底边,平分顶角; 2、等腰三角形两腰上的中线相等,并且它们的交点与

等腰三角形判定

1、两边上中线相等的三角形是等腰三角形; 2、如果一个三角形的一边中线垂直这条边(平分

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4