大冶铁矿井下开采巷道围岩稳定性分析及控制技术研究
深部岩体所受地应力是巷道围岩变形所处的大环境,同时岩体的结构、岩性、岩体的强度等自身指标因素影响围岩变形的大小,还有节理、裂隙、断层控制着围岩变形。这些构造的切割作用把岩体分割成连续又不连续的岩体,使得岩体本身的受力变成了多场(应力场,温度场,渗流场)与多相(气,液,固)影响下的地质构造和工程结构相互作用的耦合问题。所以说围岩变形综合反映了开挖后围岩形态的变化,也是巷道稳定性的直观依据,而支护设计是控制变形的基本手段。巷道围岩位移按时间历程分为三部分;(1)断面开挖时瞬间产生的弹性位移;(2)荷载释放产生的弹性或弹塑性位移;(3)释放荷载达到最大而保持不变的情况下,时间效应产生的粘弹性位移。
实际测量面滞后于开挖面,因此实践测量所得的收敛量是部分的,主要是第三部分。因此,分析围岩变形原因及其机理,合理适时进行支护是确保巷道稳定的核心,也是保证矿山安全正常生产的关键。目前主要从现场监测,相似材料模拟实验,计算机数值模拟计算和理论分析等手段对围岩变形进行研究,分析围岩变形机理,以达到合理支护和准确预测的效果。大冶铁矿尖林山Ⅱ号矿体上盘围岩为变质闪长岩,矿岩接触带破碎,被列为不稳定的Ⅵ类区和极不稳定的V类区。
从-20m水平开始,上盘巷道及其附近矿岩出现地压活动,巷道垮塌,使得一部分矿石无法回收;-30m水平对应部分也出现类似情况;1993年下半年,采矿进入-40m水平,-40m水平对应部位的上盘巷道出现明显的裂纹和局部冒落,垮塌围岩砸坏凿岩台车,堵塞运输巷道;1996年后,-50m水平、-60m水平,包括龙洞采区的-62m水平、-74m水平均不同程度出现了进路巷道垮塌、运输巷道大面积垮塌现象。大冶铁矿矿床赋存在裂隙带内,矿岩接触带的稳定性差,掘进与支护困难,以及矿山工程技术人员与工人对复杂岩体开挖的力学性态特别是变形与破坏规律的认识不清楚,矿山开采存在重大安全隐患。为了做好井下的安全生产,杜绝井下巷道重大伤亡事故的发生,不断提高劳动生产率,必须对地下岩体的地质特性、岩体的稳定性、巷道围岩变形与破坏机理进行深入研究。因此,论文结合《大冶铁矿井下开采不稳定区域采场巷道稳定性控制及支护方法研究》项目,以大冶铁矿主要在用巷道围岩为研究对象,运用资料收集、现场调查、理论分析、室内试验、数值模拟和现场测试等方法,揭示巷道围岩失稳机理和影响巷道围岩稳定性
的因素,分析不稳定区域巷道围岩变形规律(交叉巷道、矿岩接触带处巷道和粉矿巷道)、微观失稳机理及控制方法,开发喷锚支护设计智能系统,为大冶铁矿井下开采的施工提供理论依据和技术支持,研究成果具有较为重要的理论和工程应用价值。
论文系统开展了大冶铁矿井下开采巷道围岩稳定性分析及控制技术研究,主要完成了以下工作:1.研究区工程地质条件和岩石物理力学性质研究(1)在系统分析研究区工程地质特征和现场工程地质勘查基础上,确定了大冶铁矿井下开采巷道不稳定区域为巷道交叉点、矿岩接触带及粉矿地带。(2)通过对尖林山-60水平6#、8#和13#进路进行岩体节理裂隙调查,可知节理裂隙存在着以下分布规律:a.6#进路的节理走向在130°-160°之间分布较多,在1350方向的节理裂隙数量最多;优势节理组有两组,即S1:76/229,S2:28/255,以急倾斜节理为主,700-800占50%,平均间距5.7条/m;b.8#进路的节理走向主要集中在115°~130°之间,近似于正态函数分布;有一组优势节理组,即S1:44/011,节理倾角分布范围较广,主要以倾斜、急倾斜为主,平均间距4.2条/m;c.13#进路的节理走向主要集中在25°方向上和115°~135°之间;有两组优势节理组,即S1:69/043,S2:85/030,以急倾斜节理为主,平均间距3.8条/m:d.节理裂隙除几处张开度很大外,其他的张开度一般都很小,延展性较差。节理裂隙中的充填物也很少,调查发现的节理裂隙充填物有方解石、绿泥石。(3)通过现场岩石取样测定获得了岩石物理力学参数;试验得到的蚀变闪长岩的平均单轴抗压强度为98.8MPa,所测得的弹性模量的平均值为4.42×104MPa,获得了变质闪长岩的应变值以及泊松比,为后续的研究打下了良好的基础。
(4)矿岩体声波特性现场测试表明:尖林山采区-60m回采进路两帮围岩松动圈范围大致在1.80m左右,现场矿体的纵波平均速度大致为4035.50m/s;龙洞采区-62m水平巷道两帮围岩松动圈范围在2.40m左右,现场大理岩组岩体的纵波平均速度为3625.90m/s;根据研究区巷道松动圈松动范围为1.80-2.40m,可大致计算出研究区巷道锚杆支护长度可参考设计为2.10-2.80m。2.巷道围岩失稳机理分析(1)巷道围岩主要的失稳形式:拉断破坏、局部落石破坏、剪切破坏与复合破坏、重剪破坏、潮解膨胀破坏、岩爆破坏。(2)影响主导围岩的稳定性因素:围岩地应力、地下水、岩体的完整性、围岩材料的质量、巷道断面以及综合因素。
(3)影响巷道围岩稳定性的主要指标:围岩成分及其结构构造是影响围岩稳定性的基本因素;构造结构面发育特征是影响围岩稳定性的主导因素;围岩稳定性的控制因素受围岩风化程度和蚀变程度的影响;确定巷道围岩的稳定性基本因素之一是巷道埋深;地下水存在对围岩稳定性也有一定的影响;巷道跨度影响巷道围岩应力状态,对巷道支护设计指标选取有影响;爆破扰动易引起相邻巷道的围岩松动、开裂或失稳破坏。
3.不稳定区域巷道失稳数值模拟(1)不合理的开挖及支护顺序是影响交叉巷道失稳的重要因素,通过对不同类型交叉巷道开挖过程的数值模拟研究得出以下规律:a.对十字形、Y字形交叉巷道开挖数值模拟分析可知:交叉巷道选取不同的开挖顺序,巷道周围岩体的应力和巷道产生的应变不同。交叉巷道的开挖应该选择巷道开挖以后产生的变形量小、应力集中少的顺序为最优开挖顺序。开挖完一条巷道后要先对其支护,然后再开挖与其相交的巷道。b.巷道围岩的变形特征明显与施工过程相关。
因此,在设计和施工交叉巷道时必须分析各个加、卸载过程,对比不同加、卸载顺序而导致的巷道塑性区范围、应力分布结果以及巷道围岩位移变形情况,选择最佳的卸载开挖顺序,从而采用优化的施工方法与优化的支护措施,以保证巷道交叉点在施工期和运营期的安全稳定。(2)矿岩接触带巷道围岩失稳特点及机理a.在研究区当前的采区分段水平和巷道断面尺寸形状下,大部分巷道和围岩可以保持自稳,虽然掘进后会产生次生应力场,但对于以铁矿石、大理岩、闪长岩等各种硬岩为主的采区备采巷道来说,这些硬岩本身的强度足以抵抗掘进后引起的附加应力。b.在矿岩接触带等岩性弱结构位置发生的破坏一般为沿着接触带层位的剪切破坏,相对巷道中心线不对称;局部巷道两帮会发生轻微的片帮,应力集中区随着塑性区的出现从岩壁向纵深转移,如果应力集中的强度超过围岩屈服强度,这个时候将产生新的塑性区,于是塑性区将随着新的塑性区的出现不断向纵深发展。(3)因为粉矿结构松散,物理力学性质差,强度低,因此对巷道围岩的稳定性极其不利。
(4)尖林山采区巷道稳定性数值模拟计算表明:巷道交差点以及矿岩接触带是巷道应力集中的主要区域,数值计算结果与课题组现场调查所确定的研究区不稳定区域基本吻合。进行不稳定区域巷道失稳机理的深入分析可为巷道稳定性支