【参考借鉴】中国人民大学出版社(第四版)高等数学一第1章课后习题详解.doc

优质参考文档

知识点:数列极限;

思路:多项和时,先化简xn。

111111?11?1?1?[(1?)?(?)????]?1???? 232352?2n?12n?1?2?2n?1?1∴limxn? n??2?2?e1xx??★★14.求极限lim??。 1x?0?x?x1?e??解:∵xn?知识点:左右极限的求法;

思路:求有绝对值的函数极限要先去绝对值,另外因e在x?0处的左右极限值不同,所以需通过左右

极限讨论上述极限

1x解:?x??0时,e1x?0,e2x?0;

x??1, x?2?e1xx???2?1?1 ∴f?0?0??lim??2x?0??x?x1?e??12x?x??0时,ex???,ex???;?1,

x21/x?1?2?e1xx?e???lim?1?1?f?0?0?, ∴f?0?0??lim?2??1/xx?0?x?01?xx?e?1?e?e1/x?2?e1xx?∴lim????1 1x?0?x?x?1?e?★15.用定义证明函数f?x??x当x?0时极限为0。

知识点:函数极限定义

证明:???0,要使x?0?x??,只须取???,则当0?x?0??时,总有x?0??,

故limx?0x?0

★16.证明:若

x???及x???时,函数f?x?的极限都存在且都等于A,则limf?x??A。

x??知识点:函数极限定义

证明:对???0,因limf?x??A,∴?X1?0?X1?,当x?X1时,总有f?x??A??,

x???又因现取

x???limf?x??A,∴对上述??0,?X2?0,当x??X2时,总有f?x??A??,

X2?,当x?X时,总有f?x??A??,故limf?x??A;

f?x?当x?x0时极限存在的充分必要条件是左极限,右极限各自存在

x??X?max?X1,★17.利用极限定义证明:函数

并且相等。

知识点:数列极限定义

x?x0证明:必要性:设limf?x??A,于是?????0?,?????0?,

当0?x?x0??时(即0?x?x0??和???x?x0?0),有f?x??A??,

优质参考文档

优质参考文档

所以

充分性:当当??1有

f?x0?0??A,f?x0?0??A

f?x0?0??A,f?x0?0??A,则?????0?,??1??1?0?,

及???x?x0?0时,有f?x??A??;??2??2?0?,当0?x?x0??2时,

?x?x0?0,

f?x??A??;取??min??1,?2?,则当0?x?x0??x?x0??时,亦有

即0?∴

x?x0f?x??A??,

limf?x??A

x2?9★18.根据定义证明:y?为x?3时的无穷小。

x?3知识点:函数极限定义; 证明:?????0?,要使

于是对于??x2?9?0?x?3??,只须取???,

x?3,当

???0?,存在?x?3??,总有

x2?9?0??x?3x2?9?0 ,∴limx?3x?3px2?2?3qx?5,当x??时,p、q取何值时f?x?为无穷小量?p、q ★19.已知f?x??x2?1取何值时f?x?为无穷大量?

知识点:无穷小与无穷大的定义 思路:分析p、q取值对极限的影响

?px2?2?px2?2解:(1)limf?x??lim??3qx?5??lim3qx?lim5

??limx??x???x2?1x??x2?1x??x?????p?5?lim3qx?0

x??则必有q?0,p?5?0,故当q?0,p??5时,f?x?为无穷小量;

?px2?2??(2)若limf?x??lim??3qx?53qx??,必有q?0,p为 ???p?5?limx??x???x2?1x????任意常数,故当q?0,p为任意常数时,f?x?为无穷大量;

★20.计算下列极限:

xn?1(1)lim(n为正整数);(2)limx?1x?1x?42x?1?3x?2?2;(3)

x???lim??x?p??x?q??x?;

32xsinx1x2?1x2?23x?1arctan;?3?cosx?;(4)lim3(5)lim(6)lim 22x???x??x?xx?1x?x?1?1?x知识点:极限求法;

?xn?1x?1?xn?1?xn?2?xn?3???x?1?lim?n; 解:(1)limx?1x?1x?1?x?1?(2)lim??2x?1?3x?2?2x?4?limx?4?lim?2x?8??x?4?x?4??x?2?22x?1?3???2?2x?1?3??2x?1?3??x?2?2? ?x?2?2??x?2?2??2x?1?3?23

优质参考文档

优质参考文档

(3)

x???lim??x?p??x?q??x2(p?q)x?pq ?x?p??x?q??x??xlim?lim???x????x?p??x?q??x?x?p??x?q??x?p?q 2x2?1x2?1?3?cosx??0 ?0,而3?cosx是有界量,故lim3(4)因为lim3x??x?xx??x?x2xsinx12x1arctan?limsinxarctan?0; (5)limx???xx???x11?x2x2?1x3(6)limx?2x?123x?1?x?1?2?limx?1?x?1???x?1??x?333223x?1??2?limx?13?x123?x?1?2?1 9?12,?x?0,★21.设f?x????x2?2x,??3x?6,求limf?x?及limf?x?。

x???x???x?0x?0,讨论x?0及x?2时,f?x?的极限是否存在,并且

0?x?22?x知识点:左右极限与原极限关系 思路:分段点极限要左右极限分别求 证明:lim?f?x??lim?x?2x?21???,lim?f?x??lim?x2?2x?0,故limf?x?不存在; 2x?0x?0x?0x?0x?0xlim?f?x??lim?x2?2x?0,lim?f?x??lim?3x?6?0,故limf?x??0;

x?2x?2x?2x???limf?x??limx???1?0,limf?x??lim3x?6???;

x???x???x2

★22.计算下列极限:

3x2?52x1?tanx?1?sinxsin;(1)lim2sinn?x?0?;(2)lim(3)limx??5x?3n??x?0x2x?1?cosx?n知识点:极限求法;

思路:求极限时,当某一因式是有根号差的形式时,注意分式有理化;用等价代换求极限。

x????nxn2解:(1)lim2sinn?lim?sin??x?1?x?x;

xn??n??2???n?2??25sin3?3x2?523x2?5x?2?limx2?1?2?6 sin?lim2(2)lim?x??5x?3x??3xx??5x?3x255?xx1?tanx?1?sinx(3)lim

x?0x?1?cosx?优质参考文档

优质参考文档

?limx?0tanx?sinxx?1?cosx??1?tanx?1?sinx?(分子有理化)

tanx?1?cosx?11tanx1?lim?lim?

x?0x?02x?1?cosx?2x2★★23.计算下列极限:

ln?a?x??ln?a?x??2lna?1?tanx?x2(1)lim;(2)lim??x?01?sinxx?0x2??知识点:重要极限lim?1?x??e。

x?01x1

思路:利用已知极限lim?1?x??e求解。

x?0a1??222?x2?(?a2)1?a?x?ln?a?x??ln?a?x??2lna??1?x??limln?limln解:(1)lim= ????2222??x?0x?0x?0xx?a??a?????21x2?1??x?lim??2?ln??1?a2x?0a????????x2a2??11lne??a2a213

1??1?tanx??x?tanx?sinx?x3(2)原式?lim?1?? ?1???lim?1??x?0x?01?sinx????1?sinx???tanx?sinx??lim?1?,

?x?01?sinx??tanx?sinx1sinx?1?cosx?1?3?lim?3因为limx?0x?0?1?sinx?cosxx1?sinxxsinx1?cosxx2/21?lim??lim2?, x?0x?0xx2x2所以原式?★★★24.设x11?sinxtanx?sinx1??tanx?sinx1?sinxx3

e12

?1,xn?1?1?xn?n?1,2,??,求limxn。

n??1?xn知识点:单调有界数列必有极限。

思路:先证明数列单调(可用归纳法),且有界,然后知必有极限,可设极限为A,再求出A。 解:x2?1?xn?xn?113?,则0?x1?x2,假设0?xn?1?xn,则 22?xn?1??xn?xn?1?xn?????1??1???1?x??1?x??1?x??1?x??0,即0?xn?xn?1, n?1?n?nn?1???xn?1,可知本数列是单调增加的;

由数学归纳法,任意n?N,有xn又由xn?1等式xn?1?1?xn1?2??2,知本数列有界,所以极限必存在,设limxn?a

n??1?xn1?xn?1?xn1?xn两边取极限得:limn??xn?1?lim(1?n??xna)?a?1?,解得

1?xn1?a优质参考文档

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4