美国人口增长预测模型

2016年数学建模论文

第 一 套

论文题目: 人口增长模型的确定 组 别: 第35组

姓 名: 耿晨 闫思娜 王强

提交日期: 2016年7月4日

题目:美国人口增长预测模型

摘 要

本文根据近两个世纪美国每十年一次的人口统计数据,建立了指数增长模型,即Malthus模型,并通过1790-1890年的数据验证了它的准确性。但是,随着时间的推移,拟合函数与统计数据误差逐渐增大,所以,又建立了阻滞增长模型,即Logistic模型,这个模型的拟合函数与统计数据误差较小,并用该模型对美国未来几年的人口做出了预测。总体来说,阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。

关键词:指数增长模型,阻滞增长模型,人口预测

一、问题重述

1790-1980年间美国每隔10年的人口记录如下表所示。

表1:人口记录表

1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 年份 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 人口(?106) 3.9 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 年份 人口(?106) 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5 1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。

2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。

3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。

二、问题分析

影响人口增长的因素很多,其中最主要的两个因素是出生率和死亡率。出生率受到婴儿死亡率、对避孕的态度及措施效果、对堕胎的态度、怀孕期间的健康护理等因素的影响;死亡率则受到卫生设施与公共卫生状况、战争、污染、医疗水平、饮食习惯、心理压力和焦虑等因素的影响。此外,影响人口在一个地区增长的因素还有迁入和迁出、生存空间的限制、水和食物、疾病等。在这些因素中,有些是常态的或者有规律的,这些因素对人口的增长是恒定的;而有些因素是随机的,对人口的增长是没有规律的。因此,当大范围、长时期研究人口增长问题时,对人口增长产生影响的随机因素就不在考虑了。

建立该模型的目的是要能通过模型预测美国后来每十年的人口数具体变化,并与实际的数据进行对比,看误差的大小。在此基础上利用改进的模型对美国人口同时期数量进行预测,并进行总结分析。

三、问题假设

人口指数增长模型中采用以下基本假设:

(1)单位时间的人口总量增长与当时的人口呈正比,比例常数为k;

(2)假设t时刻的人口为N(t),因为人口数一般是很大的,所以将N(t)近似地视为连续,可微的函数。记初始时刻(t=0)的人口数为N0。新生人口数百分率为a,死亡的百分率为b,那么,经过Δt时间后,人口数量为N(t+Δt)就是原来人口数量加上Δt时间内新生人口数减去死亡人口数。

四、变量说明

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4