.
从总体
X中抽取容量
n?16的样本观测值
?x1,x2,?,x16?,算出
1161162??x??xi?503.75,s?x?x?6.2022,试在置信水平1???0.95下,?i16i?115i?1求?的置信区间. (已知:t0.05?15??1.7531,t0.05?16??1.74592,t0.025?15??2.1315,
t0.025?16??2.1199).06-07-1《概率论与数理统计》试题A参考答案
19 27二、1、 (C);2、 (D);3.?B?;4、?A?;5、?D? 三、解:设A表示事件“甲命中目标”,B表示事件“乙命中目标”,则A?B表示“目标被命中”,且P(AUB)?P(A)?P(B)?P(AB)
?P(A)?P(B)?P(A)P(B) ?0.5?0.4?0.5?0.4?0.7
P[B(AUB)]P(B)0.4???0.57 所求概率为P(B/AUB)?P(AUB)P(AUB)0.7一、1. 0.75;2. 0.2;3. 3;4. ?(n);5.
四、解:(1)由???????Aexf(x)dx?1,即?dx?A????dx?A?arctanex?xx2??xe?e1?(e)????????2A?1
ln3ln31dx21ex??2122???0dx 所以A?.(2)P?0?X?ln3????x?xx202???e?e1?(e)??22????1????
???34?6x2xdt2(3)分布函数F(x)??f(t)dt????arctanex ?t????t??e?e?2?arctane?五、解:FY(y)?1x2ln30P{Y?y}?P?2X?1?y?
y?1y?1???P?X??????2fX(x)dx
2??y?1?0即y?1时,FY(y)?0; 2y?1y?11当0??1即1?y?3时,FY(y)??026x(1?x)dx?(y?1)2(4?y);
421y?1当?1即y?3时,FY(y)??06x(1?x)dx?1;
2当即
0,y?1??1FY(y)??(y?1)2(4?y),1?y?3
?41,y?3? . . .
.
?3?(y?1)(3?y),1?y?3所以fY(y)??4
?0,其他?六、解:由题意知,X的可能取值为:0,1,2,3;Y的可能取值为:1,3. 且
1?1?P?X?0,Y?3?????,
8?2?P?X?1,Y?1??C1333?1??1??????,
8?2??2?2P?X?2,Y?1??C23?1??1?3?????, ?2??2?8321?1?P?X?3,Y?3?????.
8?2?于是,(1)(X,Y)的联合分布为 Y X 0 1 2 3 (2)P1 0 3 1 80 0 3 83 80 1 8?Y?X??P?X?0,Y?3??1.
8?????????七、解:(1)由1??f(x,y)dxdy??0?????0??Ae?(x?2y)dxdy
?A?0e?xdx?0e?2ydy?所以A?2.
??1A 2?e?x x?0f(x,y)dy??(2)X的边缘密度函数:fX(x)??. ??其他?0,???2e?2y y?0f(x,y)dx??Y的边缘密度函数:fY(y)??. ??0,其他?(3)因f(x,y)?fX(x)fY(y),所以X,Y是独立的.
??????八、解:E(X)??xf(x)dx??x???1dx?
??1??1x???X ?X,得参数?的矩估计量为?令EX?X,即
??1X?1?? . . .
.
??n,xi?1(i?1,2,?,n)?n??1n??似然函数为L(?)??f(xi,?)????x?
i?i?1??i?1??0,其他?当xi?1(i?1,2,?,n)时,L(?)?0,
lnL(?)?nln??(??1)?lnxi
i?1ndlnL(?)n???lnxi?0
d??i?1n得参数?的极大似然估计值为
???九、解:由于正态总体Nn?lnxin
??,?2?中期望?与方差?i?12
都未知,所以所求置信区间为
??SS??????X?nt?n?1,X?nt?n?1??.
22???由??0.05,n?16,得?0.025.查表,得t0.025?15??2.1315.
21161162x?503.75?? 由样本观测值,得x?, s?x?x?6.2022. ?i?i16i?115i?1s6.2022t??n?1??503.75??2.1315?500.445, 所以, x?n216s6.2022t??n?1??503.75??2.1315?507.055, x?n216因此所求置信区间为?500.445,507.055?
. . .
.
07-08-1《概率论与数理统计》试题A参考答案 一.1.B;2D.;3.B;4.C;5.A.
91;4.;5.1.
5642三.1.解:设用Ai表示:“第一次比赛取出的两个球中有i个新球”,i?0,1,2;
“第二次取出的两个球都是新球”。则 B表示:
22C8C2128 P?A0??;P?BA0?? ??22C1045C1045二.1.P112C2C816C721 P?A1??;P?BA1?? ??2245C10C104522C8C62815 P?A2??;P?BA2?? ??22C1045C1045?B??1?p;2.3;3.
则
P?B??P?A0?P?BA0??P?A1?P?BA1??P?A2?P?BA2??784?0.38720252.解:
Z?X?Y的可能取值为2,3,4,则
P P P所以Z?Z?2??P?X?1,Y?1??1?1?1
339?Z?3??P?X?1,Y?2??P?X?2,Y?1??1?2?2?1?4
33339?Z?4??P?X?2,Y?2??2?2?4
3392 3 4 ?X?Y的分布律为: Z P 19?x ??490 49 3.解(1)
?????f?x?dx??Ce????dx?2C?e?xdx?2C?1
1 21?x?f?x??e????x????
211?x11 (2)P?X?1???edx??e?xdx?1?
?120e2 (3)当y?0时,F?y??PX?y?0; 当y?0时,
y1?xy2F?y??P?X?y??P?y?X?y??edx??e?xdx
?y20 得:C????? . . .
.
?0,??y?f?y??F??y???e,?2y?4.解(1)当
y?0y?0
x?1时,
????fX?x???f?x,y?dy??1?xy1dy?,
?1421?1?,x?1则fX?x???2
??0,其他?1?,y?1同理fY?y???2
??0,其他??1x(2)EX??xfX?x?dx??dx?0
???12 同理:EY??yfY?y?dy?0
??2??1??x21EX??xfX?x?dx??dx?
???123??12 同理:EY??y2fY?y?dy?
??31122 DX?EX??EX???0?
33122 同理:DY?EY??EY??
3(3)由于f?x,y??fX?x?fY?y?,所以X和Y不独立。
??2?????? E1?xy??1??XY????????xyf?x,y?dxdy???1dy?xy???dx?? ???1????11??4??91?0E?XY??EX?EY91???0 R?X,Y??13DXDY3 所以X和Y相关。
(4)P?X?Y?1????f?x,y?dxdy
x?y?1111?x1?1?1?079???3?????dx?xydy??dx?xydy??
?0?1??1?1?964?2?4?5.解:似然函数为:
. . .