配位聚合物的应用与进展

配位聚合物的应用与进展

王雄 化学化工与材料学院 应用化学1班 20133443

摘要:配位聚合物是由金属和有机配体自组装而形成的, 具有独特的空间几何构型, 在非线性光学材料、气体吸附、手性拆分和催化、分子磁性材料、超导材料, 微孔材料等诸多方面都有广阔的应用前景。本文介绍了配位聚合物的分类,列举了金属-有机骨架(MOFs)等功能型配位聚合物的研究进展,并对配位聚合物的发展前景作了展望。

关键词:配位聚合物;有机配体;合成方法;应用;催化

引言:配位聚合物(coordination polymers)或金属-有机框架(metal-organic frameworks,简称 MOFs)是指利用金属离子与有机桥联配体通过配位键合作用而形成的一类具有一维,二维或三维无限网络结构的配位化合物[1]。近年来,配位聚合物作为一种新型的功能化分子材料以其良好的结构可裁 性和易功能化的特性引起了研究者浓厚的兴趣。配合物有无机的金属离子和有机配体,因此它兼有无机和有机化合物的特性,而且还有可能出现无机化合物和有机化合物均没有的新性质。配位聚合物分子材料的设计合成、结构及性能研究是近年来十分活跃的研究领域之一,它跨越了无机化学、配位化学、有机化学、物理化学、超分子化学、材料化学、生物化学、晶体工程学和拓扑学等多个学科领域,它的研究对于发展合成化学、结构化学和材料化学的基本概念及基础理论具有重要的学术意义,同时对开发新型高性能的功能分子材料具有重要的应用价值[2-7]。并对分子器件和分子机器的发展起着至关重要的作用。配位聚合物在新的分子材料中将发挥重要的作用。配位化学理论在材料的分子设计中也将起着重要的指导作用。

材料按其性能特征和用途大致可划分为结构材料和功能材料两大类。功能材料种类繁多,功能各异,其共同的特点和发展趋势是:(1) 性能优异;(2) 分子化;(3) 巨大的应用前景。金属有机光电磁材料综合了这几方面特点,将发展成为新一代材料,其结构和性能决定了它的应用越来越广泛。以下是金属有机化合物分别在光电磁材料中的应用。 1. 配位聚合物的分类

1998年,R obson教授根据聚合物框架结构的不同将其分为三大类:一维链

状聚合物,二维网状聚合物和三维网状聚合物。这种分类使人很容易了解配位聚合物的空间结构,但从配位聚合物的合成角度来看,未免有些不足。在配位聚合物的合成中,有机配体起着关键作用,配体种类的不仅直接影响到聚合物的合成,而且还涉及到聚合物的空间结构。因此,将含不同有机配体的聚合物加以分类研究,对配位聚合物的合成及其空间结构的研究将有一定的指导意义。根据有机配体种类的不同可将配位聚合物分为:含氮杂环类配体的配位聚合物;含CN配体的配位聚合物;含氧有机配体的配位聚合物;两种配体的配位聚合物;含两种或两种以上金属的配位聚合物。按金属中心的角度可分为:过渡金属,主族金属,稀土金属,多金属中心四类。 2.配位聚合物的合成方法 2.1 常规合成法

缓慢扩散法、水热/溶剂热法、溶液直接合成法等常规合成法对于获取高质量的单晶有独特的优势,因而使用广泛。

扩散法包括:气相扩散法、液层扩散法和凝胶扩散法等。气相扩散法是将金属盐和有机配体溶解于适合的溶剂后,用易挥发性的溶剂扩散进溶液中而析出晶体;液层扩散法则是将金属盐和有机配体分别溶解于不同的溶剂中,然后把其中一种溶液置于另一种溶液上,在界面处的扩散层中发生反应;凝胶扩散法也与其类似,把两者分开,让它们缓慢地互相扩散,以减缓成核速度,从而产生高质量的单晶。扩散法反应时间较长,从数天到数月不等,条件温和,有利于生成热力学稳定的产物。

水热溶剂热法是把反应物与溶剂混合于封闭体系,常用不锈钢反应釜,加热到一定的温度,在溶剂产生的自身压力下反应。这种方法比扩散法耗时短,对反应物的溶解性要求也低一些,一般几个小时至一周内可完成反应,且可控制的因素很多,包括溶剂的选择、温度、反应时间等,但反应对条件较为敏感,常常重复性较差。

由于常规合成法反应时间较长,反应物浓度低,在较大规模的合成中受到限制,目前仅限于实验室范围内的制备,因而需要发展更为高效、环境友好的方法。

2.2 固相合成法

固相反应常指固体与固体之间的反应,广义上来说则包括了所有固体反应物参与的反应。固相反应不仅能产生分子结构简单的配位化合物,也能形成三维无限网络状化合物。

目前固相反应在配位聚合物的合成中尚处于初始阶段,但固相反应的简便、高效、绿色等优势已经充分展现出来。固相反应通常在研钵中或球磨机内进行,反应控制的条件包括研磨时间、研磨强度、反应温度、助剂的添加等。

低热固相反应与机械力化学反应的区别: 在无机械研磨的作用下,反应仍能进行,直到反应结束,而机械力化学反应必须在外力的持续作用下,通过机械能使体系活化而使反应发生,机械力是不可缺少的;起始研磨的作用在于减小反应物的粒径,使反应物充分接触并混合均匀,并且增大缺陷浓度以活化底物;反应过程中的研磨作用令反应物进一步地接触,减少了反应物的包埋,促进了扩散,从而增加了反应速率。

配位聚合物中的金属离子与桥联配体之间以配位键结合,配位键的键能相对较低,容易断裂,因而其合成必须在中低温下进行。反应物的有机配体通常是分子晶体,配体分子以较弱的分子间作用力结合,晶格易变形,分子可长程移动,因此易于发生扩散和接受其他反应物的扩散。而所用的金属源又常为含结晶水的金属盐,即以水分子为配体的配合物,这些成为应用低热固相反应制备配位聚合物的前提。

2.3 超声波法

超声波在反应中的作用,被认为是超声空化现象引起的。在超声波的作用下,液态介质形成微小气泡,经历生长振荡等过程后迅速崩溃,产生极短暂的局部高温高压和极高的温度梯度,以及高速的微射流,由此带来高速的分子运动活化的反应位点并能够促进分子的自组装。

近几年超声波被引入到配位聚合物研究领域,发现其具有高效的优点。有研究表明,超声波对配位聚合物合成的加速作用是由于其增大了Arrhenius 方程的指前因子,并没有降低反应的活化能,超声波产生局部过热点大大促进产物晶体的成核与生长过程。但超声波作用下的溶液环境不利于大尺寸晶体的生长,所以超声波法不易产生适合单晶射线衍射的高质量单晶,然而解析晶体结构是制备新

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4