复变函数与积分变换(修订版)课后答案(复旦大学出版社)
所以I?iI1?2πi?又因为I1?∴?π11π ??mm2i3?23?21πsinm?d??0
2??π5?4cos?0cosm?π d??5?4cos?3?2m2π0(2) ?cos3?d?,|a|>1. 21?2acos??a2π解:令
I1??2π0cos3?d? I2?1?2acos??a22π?0sin3?d?
1?2acos??a2e3?i I1?iI2??d?
01?2acos??a2z31iθ
令z=e.cos??d??dz,则
2zizz31 I1?iI2???dz?z?1z2?12iz1?2a??a2z1z3??dzi?z?1?az2??a2?1?z?a?11?2π???2πi?Res?f?z?,??32ia?a?a?1??2π 32??aa?1??dx(3)?,a>0,b>0.
???2x?a2??x2?b2?1解:令R?z??2,被积函数R(z)在上半平面有一级极点z=ia和ib.故
?z?a2??z2?b2?得I1?I?2πi?Res?R?z?,ai??Res?R?z?,bi??11???2πi?lim?z?ai?2222?lim?z?bi?2222??z?a??z?b?z?bi?z?a??z?b???z?ai11???2πi??2222??2ia?b?a?2ib?a?b??π?ab?a?b?(4). ???x20?x2?a2?2dx,a>0.
解:???01??x2dx??dx
2???x2?a2?2?x2?a2?2z2x2令R?z???z?a?222,则z=±ai分别为R(z)的二级极点
41 / 66
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
故
(5) 1????????dx??2πi?ResRz,ai?ResRz,?ai??????x2?a2?220x2???x?sin?x0?x?b?222dx,β>0,b>0.
???z2???z2?????πi?lim??lim?2?2??z?ai??z?ai??z??ai??z?ai????π?2a解:
???2x???x?b?22?ei?xdx????x?cos?x???x?b?222dx?i???x?sin?x???x?b?222dx
而考知R?z??z?z?b?222,则R(z)在上半平面有z=bi一个二级极点.
???x???x2?b?22?ei?xdx?2πi?Res?R?z??ei?z,bi?
i?z?ze??π???b?2πi?lim???2b?e?iz?bi??z?bi?????x?sin?x???x2?b???022dx?π???b?e 2bdx?π???bπ??e? 4b4be?b从而?x?sin?x?x2?b?22eix(6) ?dx,a>0
??x2?a21解:令R?z??2,在上半平面有z=ai一个一级极点
z?a2???????eixeize?aπ7. 计算下列积分 iz??dx?2πi?Res?Rz?e,ai??2πi?lim?2πi??z?aiz?aix2?a22aiaea??sin2xdx 20??x1?x1解:令R?z??,则R(z)在实轴上有孤立奇点z=0,作以原点为圆心、r为半径的上半圆周cr,使CR,[-R,
z?1?z2?-r], Cr,[r, R]构成封闭曲线,此时闭曲线内只有一个奇点i,
2izedz2ix2iz????e1elim???πi. 于是:I?Im?1而??dx??Im?2πi?Res?Rz,i???lim?dz?2?cr?r?0?22??cr?0z1?zz?1?z?x?1?x??2?2(1)?r故: