H3268K,(0.1-x)kg H20(l) xkgH2O(l)H1273KxkgH2O(l)ΔH=ΔH1+ΔH2+ΔH3=0
ΔH1=4.21kJ?K-1?kg-1×(0.1-x)kg×(273-268)K ΔH2=4.21kJ?K-1?kg-1×x?kg×(273-268)K ΔH3=-333.5kJ?kg-1×x?kg 所以有
4.21kJ?K-1?kg-1×0.1kg×(273-268)K-333.5kJ?kg-1×x?kg=0 得 x=6.31×103kg
-
H=0273K,(0.1-x)kg H2O(L)xkgH2O(s)H2
所以析出冰的质量为6.31×103kg
-
【20】 1molN2(g),在298K和100kPa压力下,经可逆绝热过程压缩到5dm3。试计算(设气体为理想气体):
(1)N2(g)的最后温度; (2)N2(g)的最后压力; (3)需做多少功。
【解】 (1)1molH2经过绝热可逆过程(设为理想气体),则
nRT11mol?8.314J?K?1?mol?1?298KV1???0.02478m3
p1100000Par?CP,mCV,m?7R/27??1.4 5R/25根据 TVr?1?C得
????rr?1?V1T2?T1??V?2?24.78dm3?298K??5dm3?????1.4?1?565.29K
(2) 根据pV?C得
- 21 -
?V1p2?p1??V?2??24.78dm3??5dm3??100kPa???r????1.4?940.12kPa
(3)由于是绝热反应 Q=O
W??U?nCV,m(T2?T1)?1mol?5?8.314J?K?1?mol?1(565.29K?298K) 2=5555.6J
【21】 理想气体经可逆多方过程膨胀,过程方程为pVn?C,式中C, n均为常数,n>1。
(1)若n=2,1mol气体从V1膨胀到V2,温度由T1=573K到T2=473K,求过程的功W; (2)如果气体的CV,m?20.9J?K【解】 (1)由于pV2=C,则p=c/V2
?1?mol?1,求过程的Q,ΔU和ΔH。
W???pdV??V2V1?1C1?CC??dV?C????p2V2?p1V1?nR(T2?T1) 2??V?V2V1?V2V1=1mol×8.314J?K-1?mol-1(473K-573K)=-831.4J (2)对于理想气体,CV,m?20.9J?K?1?mol?1
Cp,m?(20.9?8.314)J?K?1?mol?1?29.214J?K?1?mol?1 ?U?nCV,m(T2?T1)?1mol?20.9J?K?1?mol?1(473K?573K)??2090J ?H?nCP,m(T2?T1)?1mol?29.214J?K?1?mol?1(473K?573K)??2921.4J
Q=ΔU-W=-2090J-(-831.4J)=-1258.6J
【22】 在298K时,有一定量的单原子理想气体(CV,m?1.5R),从始态2000kPa及20dm3经下列不同过程,膨胀到终态压力为100kPa,求各过程的ΔU,ΔH,Q及W。
(1)等温可逆膨胀; (2)绝热可逆膨胀;
(3)以δ=1.3的多方过程可逆膨胀。
试在p-T图中化画出三种膨胀功的示意图,并比较三种功的大小。 【解】n?pV?RT2000kPa?20dm3?16.145mol8.314J?K?1?mol?1?298K
(1)等温可逆膨胀
由于是理想气体的等温过程则 ΔU=ΔH=0
- 22 -
W??nRTlnp1p2000kPa??p1V1ln1??2000kPa?2