精品文档
卫星通信系统设计
一、设计要求
1.覆盖东南亚地区(地面终端为手持机);
2.波束:卫星天线有140个点波束,EIRP:73dbw, G/T :15.3db/k; 3.支持数据速率9.6kbps,至少提供10000路双向信道; 4.频段:L波段,上行 1626--1660MHZ; 下行 1525--1559MHZ。 二、总体设计方案 1.系统组成
卫星通信系统由卫星星载转发器、地球站接收、地球站发送设备组成。本设计系统卫星定位与赤道上空123oE,加里曼丹(即婆罗洲)上空。距地面3.6KM,属地球同步卫星。 系统组成如图1所示
发送端输入的信息经过处理和编码后,进入调制器对载波(中频)进行调制;以调的中频信号经过上变频器将频率搬移至所需求的上行射频频率,最后经过高功率放大器放大后,馈送到发送天线发往卫星。 卫星转发器对所接受的上行信号提供足够的增益,还将上行频率变换为下行频率,之后卫星发射天线将信号经下行链路送至接受地球站。 地球站将接受的微弱信号送入低噪声模块和下变频器。低噪声模块前端是具有低噪声温度的放大器,保证接收信号的质量。下变频、解调器和解码与发送端的编码、调制和上变频相对应。
精品文档
精品文档
2.系统传输技术体制 ○1,调制方式
本系统采用π/4-QPSK调制机制
QPSK(Quadrature Phase Shift Keying)正交相移键控,是一种数字调制方式。在数字信号的调制方式中QPSK四相移键控是目前最常用的一种卫星数字信号调制方式,它具有较高的频谱利用率、较强的抗干扰性、在电路上实现也较为简单。 但是,当QPSK进行脉冲成形(信号发送前的滤波,减小信号间干扰,将信号通过设定滤波器实现)时,将会失去恒包络性质,偶尔发生的弧度为π的相移(当码组0011或0110时,产生180°的载波相位跳变),会导致信号的包络在瞬时通过零点。任何一种在过零点的硬限幅或非线性放大,都将由于信号在低电压时的失真而在传输过程中带来已被滤除的旁瓣。为了防止旁瓣再
精品文档
精品文档
生和频谱扩展,必须使用效率较低的线性放大器来放大QPSK信号。OQPSK是在QPSK基础上发展起来的一种恒包络数字调制技术。消除180°的相位跳变。恒包络技术所产生的已调波经过发送带限后,当通过非线性部件时,只产生很小的频谱扩展。这种形式的已调波具有两个主要特点,其一是包络恒定或起伏很小;其二是已调波频谱具有高频快速滚降特性,或者说已调波旁瓣很小,甚至几乎没有旁瓣。它与QPSK有同样的相位关系,也是把输入码流分成两路,然后进行正交调制。不同点在于它将同相和正交两支路的码流在时间上错开了半个码元周期。由于两支路码元半周期的偏移,每次只有一路可能发生极性翻转,不会发生两支路码元极性同时翻转的现象。因此,OQPSK信号相位只能跳变0°、±90°,不会出现180°的相位跳变。本系统采用π/4-QPSK调制,它是OQPSK和QPSK的折中,比PQSK有更好的包络性质,它能够非相干解调,使接收机设计大大简化,在多径扩展和衰落的情况下,π/4-QPSK调制性能更好。 ○2,多址接入方式
OFDMA:OFDM正交频分复用结合CDMA码分多址
OFDM将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰 ICI 。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容
精品文档