?1(2)设A = LU = ??l2??001l30??u1?00? ??1??0??1u200?1?? u3??1245115,u2? ,l3? ,u3? . 55242453115T 求解方程组LY = d . 解得Y = (17,,).
245计算各元素得:u1?5 ,l2? 求解方程组UX = Y . 解得X = (3,2,1)T . 6、证:(1)(2)相同.
因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相
应
的高斯-赛德尔迭代法都收敛. (1)雅可比迭代公式:
1(k)2(k)10x1(k?1)??x2?x3?
77711(k)(k?1)x2??x1(k)?x3?1
4422(k)2(k?1)x3??x1(k)?x2?
993高斯-赛德尔迭代公式:
1(k)2(k)10x1(k?1)??x2?x3?
77711(k)(k?1)x2??x1(k?1)?x3?1
4422(k?1)2(k?1)x3??x1(k?1)?x2?
993(2)雅可比迭代公式:
x1(k?1)?(k?1)x2(k?1)x32(k)1(k)4x2?x3? 55513(k)2??x1(k)?x3? 55521(k)11?x1(k)?x2? 555高斯-赛德尔迭代公式:
x1(k?1)?(k?1)x22(k)1(k)4x2?x3? 55513(k)2??x1(k?1)?x3? 555 6
(k?1)x3?2(k?1)1(k?1)11x1?x2? 5557、(1)证:因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和
相
应的高斯-赛德尔迭代法都收敛。
(2) 雅可比迭代法: 写出雅可比迭代法公式:
x(k?1)??2(k)1(k)1215x2?5x3?5
x(k?1)1(k)1(k)2?4x1?2x3?5
x(k?1)13(k)33??5x(k)1?10x2?10
取x(0) = (-3,1,1)T,迭代到18次达到精度要求,
x(18)
= (-3.999,2.999,1.999)T . 高斯-赛德尔迭代法:
写出高斯-赛德尔迭代法公式:
x(k?1)??2(k)1(k)1215x2?5x3?5
x(k?1)?11(k)24x(k?1)1?2x3?5
x(k?1)??15x(k?1)3(k?1)331?10x2?10
取x(0) = (-3,1,1)T,迭代到8次达到精度要求,
x(8)
= (-4.000,2.999,2.000)T . 8、SOR方法考试不考。
9、证明:雅可比法的迭代矩阵为:
??00?1??0 ?BJ??D?1(L?U)?????10? , ?I?BJ?10??3?230???1????13?23 解得?(BJ)??1,所以雅可比迭代法不收敛. 高斯-赛德尔法的迭代矩阵为:
7
?10
?
?0?1?00?1?? , ?I?M?0??1 00?1 M??(D?L)?1U??????00??1?00?1?? 求得?1??2?0,?3?1,则?(M)?1 , 所以高斯-赛德尔迭代法不收敛.
10、证明:雅可比法的迭代矩阵为:
??0 BJ??D?1(L?U)???1?1????21201?2?1???21? , ?I?BJ?1?10??2????1212121
?? 求得?1?0,?2?55i,则?(BJ)?1 , i,?3??22所以雅可比迭代法不收敛.
高斯-赛德尔法的迭代矩阵为:
11?11?0????22?22??1111 M??(D?L)?1U???0 ? , ?I?M?0???22?22?13?013?0???44?44??1 求得?1??2??,?3?0,则?(M)?1 , 所以高斯-赛德尔迭代法收
2敛.
11、证明:当 - 0.5 < a < 1 时,由
1aa1a = 1 - a2 > 0 , a1a= (1 - a)2(1 + 2a) > 0 , 所以A正定. a1aa1?0?a?a??,所以, ?a0?a 雅可比迭代矩阵BJ =??????a?a0???aa |?I?BJ| = a?a = ?3?3?a3?2a2?(??a)2(??2a)
aa? 所以, ?(BJ)?|2a| , 故当-0.5 < a < 0.5 时,雅可比迭代法收敛。
8
12、解: A? = max {0.6+0.5,0.1+0.3} = 1.1; A1 = max {0.6+0.1,0.5+0.3} = 0.8; AF=0.36?0.25?0.01?0.09 = 0.8426;
?0.60.1??0.60.5??0.370.33? AA = ?? ?0.10.3? = ?0.330.34? 0.50.3??????T|?I?ATA| =
??0.37?0.33?0.33??0.34 = ?2 - 0.71? + 0.0169 = 0
所以 ?max(ATA) = 0.685,所以 A2= 0.685 = 0.83. 13、证明:(1)由定义知, x?maxxi??xi?x1??maxxi??x1?i?ni?1i?11?i?1i?1nnn???nx?
故 x(2)由范数定义知,
??x1?nx?
A2??max(ATA)??1(ATA)??2(ATA)?????n(ATA)
2?AF ??a??a?????a???aij2i12i22ini?1i?1i?1j?1i?1nnnnn22
1122A2??max(ATA)?[?1(ATA)??2(ATA)?????n(ATA)]?AF
nn故
1nAF?A2?AF
习 题 三
1、解:f(x)?x4?3x?1在区间[0.3,0.4]上f'(x)?4x3?3?0,故f(x)在区间
[0.3,0.4]上严格单调减少,又f(0.3)?0,f(0.4)?0,所以方程在区间
1[0.3,0.4]上有唯一实根。令(0.4-0.3)/ 2k?1 < = ?10?2,解得k > =
24 ,即应至少分4次,取x0?0.35开始计算,于是有:
9
当k = 1 时,x1 = 0.35 , f(x1)?0 ,隔根区间是[0.3,0.35], 当k = 2 时,x2 = 0.325 , f(x2)?0 ,隔根区间是[0.325,0.35],
当k = 3 时,x3 = 0.3375 , f(x3)?0 ,隔根区间是[0.3375,0.35], 当k = 4 时,x4 = 0.34375 , f(x4)?0 ,隔根区间是[0.3375,0.34375]. 所以 x*?(0.3375 + 0.34375)/2 ? 0.341.
2、解:f(x)?x3?x?4在区间[1,2]上f'(x)?3x2?1?0,故f(x)在区间[1,2]
上严格单调增加,又f(2)?0,f(1)?0,所以方程在区间[1,2]上有唯一实根. 令
2?11?4< = ,解得k > = 13.3 ,即应至少分14次. ?10k?1223、解:作图,判断根的数目、找隔根的区间.
(1)有唯一实根,隔根区间[0,?/4],收敛迭代公式:xk?1?cosxk?sinxk.
4 (2)有唯一实根,隔根区间[1,2],收敛迭代公式:xk?1?log2(4?xk). 4、解:取x0?1.5的邻域[1.3,1.6]来考察.
(1)当x?[1.3,1.6]时,?(x)?31?x2?[1.3,1.6] ,|?'(x)|< = 0.522 = L <
21,所以,xk?1?31?xk在[1.3,1.6]上收敛.
(2)当x?[1.3,1.6]时,?(x)?1?1/x2?[1.3,1.6] ,|?'(x)|< = 0.91 = L <
1,
2所以,xk?1?1?1/xk在[1.3,1.6]上收敛.
(3)当x?[1.3,1.6]时,?(x)?1/x?1?[1.3,1.6] ,|?'(x)| = L > 1,所以, xk?1?xk?1在[1.3,1.6]上发散.
3?1在(4)当x?[1.3,1.6]时,?(x)?x3?1?[1.3,1.6] ,所以,xk?1?xk[1.3,1.6]上发散. 取x0?1.5开始计算,于是有:
10