··················································································· 12分 ?0 ·
故直线TP和直线TQ的斜率和为零 故?TMN??TNM
················································································ 13分 故TM?TN ·
故T在线段MN的中垂线上,即MN的中点横坐标为2
····································································· 14分 故|OM|?|ON|?4 ·
注:第(Ⅰ)题解得a、b、c的值有错则扣1分;第(Ⅱ)题直线TP、TQ的斜率不存在的情况若简单说明或未说明均不扣分;法1中计算|OM|?|ON|和法2中计算k1?k2如果没有代入韦达定理直接出结果扣1分;法2中不写“MN的中点横坐标为2”不扣分。
20. (本题满分13分)
(Ⅰ)A是“N?数表 ”,其“N?值”为3,B不是“N?数表” ························· 3分 (Ⅱ)方法一:假设ai,j和ai',j'均是数表A的“N?值”,
① 若i?i',则ai,j?max{ai,1,ai,2,...,ai,n}?max{ai',1,ai',2,...,ai',n}?ai',j'; ② 若j?j',则ai,j?min{a1,j,a2,j,...,an,j}?min{a1,j',a2,j',...,an,j'}?ai',j' ; ③ 若i?i',j?j',则一方面
ai,j?max{ai,1,ai,2,...,ai,n}?ai,j'?min{a1,j',a2,j',...,an,j'}?ai',j',
另一方面
ai',j'?max{ai',1,ai',2,...,ai',n}?ai',j?min{a1,j,a2,j,...,an,j}?ai,j;
········ 8分 矛盾. 即若数表A是“N?数表”,则其“N?值”是唯一的 ·
方法二:假设ai,j和ai',j'均是数表A的“N?值”,
ai,j?max{ai,1,ai,2,...,ai,n}?ai,j'?min{a1,j',a2,j',...,an,j'}?ai',j'ai',j'?max{ai',1,ai',2,...,ai',n}?ai',j?min{a1,j,a2,j,...,an,j}?ai,j, ;
故ai,j?ai',j',矛盾. 即若数表A是“N?数表”,则其“N?值”是唯一的.
············································································································ 8分 (Ⅲ)方法一:X所有可能的取值为19,20,21,...,341,342,343.
记?19中使得X?k的数表A的个数记作nk,k?19,20,21,...,341,342,343,则
nk?19?Ck?1?(18!)?C361?k?(18!)?[(18)!].
218182
218182则n362?k?19?C361?k?(18!)?Ck?1?(18!)?[(18)!]?nk.
令pk?nkN(其中N?n19?n20?n21?????n343),k=19,20,21,…,343
则pk?p362?k,p19?p20?p21?????p343?1
注意到 E(X)?p19?19?p20?20?p21?21?????p343?343
E(X)?p343?19?p342?20?p341?21?????p19?343
?p19?343?p20?342?p21?341?????p343?19
此时有2E(X)?p19?362?p20?362?p21?362?????p343?362,故E(X)?181.
············································································································ 13分 方法二:对任意的由1,2,3,…,361组成的19行19列的数表A?(ai,j)19?19.
定义数表B?(bj,i)19?19如下,将数表A的第i行,第j列的元素写在数表B的第j行,第i列,即
bj,i?ai,j(其中1?i?19,1?j?19)
显然有:
① 数表B是由1,2,3,…,361组成的19行19列的数表 ② 数表B的第j行的元素,即为数表A的第j列的元素 ③ 数表B的第i列的元素,即为数表A的第i行的元素
④ 若数表A中,ai,j是第i行中的最大值,也是第j列中的最小值 则数表B中,bj,i是第i列中的最大值,也是第j行中的最小值. 定义数表C?(cj,i)19?19如下,其与数表B对应位置的元素的和为362,即
cj,i?362?bj,i(其中1?i?19,1?j?19)
显然有
① 数表C是由1,2,3,…,361组成的19行19列的数表 ② 若数表B中,bj,i是第i列中的最大值,也是第j行中的最小值 则数表C中,cj,i是第i列中的最小值,也是第j行中的最大值 特别地,对由1,2,3,…,361组成的19行19列的数表A?(ai,j)19?19 ① 数表C是由1,2,3,…,361组成的19行19列的数表 ② 若数表A中,ai,j是第i行中的最大值,也是第j列中的最小值 则数表C中,cj,i是第i列中的最小值,也是第j行中的最大值
即对任意的A??19,其“N?值”为ai,j(其中1?i?19,1?j?19),则C??19,且其“N?值”为cj,i?362?bj,i?362?ai,j.
记C?T(A),则T(C)?A,即数表A与数表C?T(A)的“N?值”之和为362,故可按照上述方式对?19中的数表可以两两配对.
记?19中使得X?k的数表A的个数记作nk,k=19,20,21,…,343,则
nk?n362?k
令pk?nkN(其中N?n19?n20?n21?????n343),k=19,20,21,…,343
则pk?p362?k,p19?p20?p21?????p343?1
注意到 E(X)?p19?19?p20?20?p21?21?????p343?343
E(X)?p343?19?p342?20?p341?21?????p19?343
?p19?343?p20?342?p21?341?????p343?19
此时有2E(X)?p19?362?p20?362?p21?362?????p343?362,故E(X)?181.
············································································································ 13分