1. 8 可化为一元一次方程的分式 教案(华东师大版八年级下).doc

八年级数学下册《17.3 可化为一元一次方程的分式方程》教案 华东

师大版

教学目标:

1、使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程. 2、使学生理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法.

3、使学生领会“ 转化”的思想方法,认识到解分式方程的关键在于将它转化为整式方程来解.

4、培养学生自主探究的意识,提高学生观察能力和分析能力。 教学重点:

使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程. 教学难点:

使学生理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法. 教学过程: 一、问题情境导入

轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.

分 析

设轮船在静水中的速度为x千米/时,根据题意,得

8060?. (1) x?3x?3概 括

方程(1)中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程. 思 考

怎样解分式方程呢?有没有办法可以去掉分式方程中的分母把它转化为整式方程呢?试动手解一解方程(1).

方程(1)可以解答如下:

方程两边同乘以(x+3)(x-3),约去分母,得

80(x-3)=60(x+3).

解这个整式方程,得

x=21.

所以轮船在静水中的速度为21千米/时. 概 括

上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母. 二、例题: 1、例1 解方程:

12?2. x?1x?12

解 方程两边同乘以(x-1),约去分母,得

x+1=2.

解这个整式方程,得

x=1.

解到这儿,我们能不能说x=1就是原分式方程的解(或根)呢?细心的同学可能会发现,当x=1时,原分式方程左边和右边的分母(x-1)与(x-1)都是0,方程中出现的两个分式都没有意义,因此,x=1不是原分式方程的解,应当舍去.所以原分式方程无解. 我们看到,在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验. 2、例2 解方程:

210030?. xx?7解 方程两边同乘以x(x-7),约去分母,得

100(x-7)=30x.

解这个整式方程,得

x=10.

检验:把x=10代入x(x-7),得

10×(10-7)≠0

所以,x=10是原方程的解. 三、练习:P12第1题 四、小结:

⑴、什么是分式方程?举例说明;

⑵、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去.

⑶、解分式方程为什么要进行验根?怎样进行验根? 五、作业:

P12 习题17.3第1题(1)(2)、第2题 六、课后反思:

§17.3 可化为一元一次方程的分式方程(2)

教学目标:

1、进一步熟练地解可化为一元一次方程的分式方程。 2、通过分式方程的应用教学,培养学生数学应用意识。 教学重点:

让学生学习审明题意设未知数,列分式方程 教学难点:

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4