2019最新高等数学期末考试试题(含答案)
一、解答题
1.设f(a)?f(c)?f(b),且a?c?b,f??(x)在[a,b]内存在,证明:在(a,b)内至
少有一点?,使f??(?)?0.
证明:f??(x)在[a,b]内存在,故f(x)在[a,b]上连续,在(a,b)内可导,且
f(a)?f(c)?f(b),故由罗尔定理知,??1?(a,c),使得f?(?1)?0,??2?(c,b),
使得f?(?2)?0,又f?(x)在[?1,?2]上连续,在(?1,?2)内可导,由罗尔定理知,
???(?1,?2),使f??(?)?0,即在(a,b)内至少有一点?,使f??(?)?0.
2.设f(x)是周期为2的周期函数,它在[-1,1]上的表达式为f(x)=e,试将f(x)展成傅里叶级数的复数形式.
解:函数f(x)在x≠2k+1,k=0,±1,±2处连续.
nπ?ix1l11cn??f?x?eldx??e?xe?inπxdx2l?l2?11???e??1?nπi?x?1?12?1?nπi?-xe?e1???1?n?21?nπi1?nπi?sinh1???1?n?1??nπ?2?故f(x)的傅里叶级数的复数形式为
??1
??1?n??1?inπ?inπxf?x??sinh1?e (x≠2k+1,k=0,±1,±2,…) 21??nπ?n???
3.将函数f (x) = x-1(0≤x≤2)展开成周期为4的余弦级数.
解:将f(x)作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有bn=0 (n=1,2,3,…)
212fxdx????0?x?1?dx?0 2??2a0?212nπxnπxfxcosdx?x?1cosdx?????02??2224n?22[??1??1] nπn?2,4,6,?0,???8?22,n?1,3,5,??nπan?8故f?x???2π?n?1?1?2n?1?2?cos?2n?1?πx2 (0≤x≤2)
4.设f (x) = x+1(0≤x≤π),试分别将f (x)展开为正弦级数和余弦级数. 解:将f (x)作奇延拓,则有an=0 (n=0,1,2,…)
2π2πbn??f?x?sinnxdx???x?1?sinnxdxπ0π0?21???1??1?π??πnnn
2?1???1??1?π?从而f?x???sinnx (0 πn?1n若将f(x)作偶延拓,则有bn=0 (n=1,2,…) an?2π2πfxcosnxdx????x?1?cosnxdx ??00ππn?2,4,6?0,????4,n?1,3,5,??n2π1π2πa0??f?x?dx???x?1?dx?π?2 π?ππ0π?24?cos?2n?1?x??从而f?x?? (0≤x≤π) 22πn?1?2n?1? 5.将下列函数f(x)展开为傅里叶级数: (1)f?x??πx?42??π?x?π? (2)f?x??sinx解:(1) a0??0?x?2π? 1π1π?πx?π fxcosnxdx??dx???????-π?πππ?42?21π?πx?1π1πan?????cosnxdx??cosnxdx?xcosnxdxπ?π?42?4-π2π?-π 1π??sinnx??π?0?0?n?1,2,?4nbn?1π?πx?1π1π?sinnxdx?sinnxdx?xsinnxdx??????π-π-ππ?42?42π n1???1??nπ?nsinnx故f?x??????1? (-π 4n?1n(2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f(x),注意到f(x)为偶函数,有bn=0,a0?1π1πfxcos0xdx?sinxdx ?????π?πππ2π4??sinxdx?π0π2π2πan??f?x?cosnxdx??sinxcosnxdxπ0π?π1π???sin?n?1?x?sin?n?1?x??dxπ0??2?n??1??1??2??π?n?1?n?1,3,5,?0,????4,n?2,4,6,?π?n2?1??所以 2??4cos2nx (0≤x≤2π) f?x????2πn?1π?4n?1? 6.将函数F?x??x?0arctantdt展开成x的幂级数. tnt2n?1解:由于arctant????1? 2n?1n?0?所以F?x???x02nx?arctantntdt?????1?dt0t2n?1n?0xn(|x|≤1) ?t2nx2n?1n?????1?dt????1?02n?1?2n?1?2n?0n?0? 7.证明,若 ?Un收敛,则?2n?1?Un绝对收敛. n?1n?证:∵ ?Un1??Un?nn2?Un2?1n2?1U2?1?1 n222n2而由 ?Un收敛,?n?11收敛,知 2nn?1