电力线载波通信的特点

电力线载波通信的特点

一、 高压载波路由合理,通道建设投资相对较低 高压电力线路的路由走向沿着终端站到枢纽站,再到调度所,正是电力调度通信所要求的合理路由,并且载波通道建设只需结合加工设备的投入而无须考虑线路投资,因此当之无愧成为电力通信的基本通信方式,尤其在边远地区更是这样。电力线载波通道往往先于变电站完成建设,对于新建电站的通信开通十分有利。为此,只要妥善解决电力线载波信道的容量问题,载波通信的优势就会显现出来。在中压配电网载波和低压用户电网载波中,节省线路建设费用,无须考虑破坏家庭已装修环境,也仍然是载波通信的优势。

二、 传输频带受限,传输容量相对较小

在高压电网中,一般考虑到工频谐波及无线电发射干扰 电力线载波的通信频带限制于40~500kHz之内,按照单方向占用4kHz带宽计算,理想情况下一条线路可安排115条高频载波通道。但由于电力线路各相之间及变电站之间的跨越衰减有限(13~43dB),不可能理想地按照频谱紧邻的方式安排载波通道,因此,真正组成电力线载波通信网所实现的载波通道是有限的,在当今通信业务已大大开拓的情况下,载波通道的信道容量已成为其进一步应用的“瓶颈”问题。尽管我们在载波频谱的分配上研究了随机插空法、分小区法、分组分段法、频率阻塞法及地图色法和计算机频率分配软件,并且规定不同电压等级的电力线路之间不得搭建高频桥路,使载波频率尽量得以重复使用,但还是不能满足需要。近来随着光纤通信的发展和全数字电力线载波机的出现,稍微缓解了载波频谱的紧张程度。 在10kV中压配电网和低压用户配电网中,除了新上的载波信号之外,不存在其它高频信号,并且一般为多址传输,因此通道容量问题并不突出。

三、可靠性要求高

有两个原因要求电力线载波机具有较高的可靠性,一是在电力系统中传输重要调度信息的需要;另一是电压隔离的人身安全需要。为此,电力线载波机在出厂前必须进行高温老化处理,最终检验必须包含安全性检验项目。为此,国家质检总局从八十年代开始即对电力线载波机(类)产品实行了强制性生产许可证管理[4]。随着时代的进步,目前管理的范围已包括各种电压等级的载波机、继电保护收发信机、载波数据传输装置(如配网自动化和抄表系统的载波部分)和电线上网调制解调器。目前大多数高压及中压电力线载波机生产企业已按照生产许可证的要求建立了较为完善的质量体系。

四、 线路噪声大

电力线路作为通信媒介带来的噪声干扰远比电信线路大得多(见图1),在高压电力线路上,游离放电电晕、绝缘子污闪放电、开关操作等产生的噪声比较大,尤其是突发噪声具有较高的电平(见图1)。根据国外资料描述,电力线的噪声特性可分为四种类型: 1、 具有平滑功率谱的背景噪声,这种类型噪声的功率谱密度是频率的减函数,如电晕噪声。这种噪声特性可以用带干扰的时变线性滤波模型来描述。

2、 脉冲噪声,由开关操作引起,这种噪声与电站操作活动的关系较大。 3、 电网频率同步的噪声,主要由整流设备产生。

4、 与电网频率无关的窄带干扰,主要由其它电力设备的电磁辐射引起。 一般电晕噪声电平大致为:220kV -25dB;110kV -35dB(带宽为5kHz),在工业区、沿海地区、高海拔地区、新线路、升压线路和绝缘设备存在微小放电的线路上噪声电平还将增

高15dB左右。因此,在这样恶劣的噪声环境下,电力线载波机一般都采用较大的输出功率电平(37~49dBm)来获得必要的信噪比。 低压电力载波通道的噪声有背景噪声、脉冲噪声、同步和非同步噪声及无线电广播的干扰等构成[6]。

五、线路阻抗变化大

高压电力线阻抗一般为300~400Ω,在线路上呈波动状态,现场实测表明,在波动幅度达到1/2左右时,对载波通道衰减将产生严重的影响[7]。在通道加工不合理、不完善、存在容性负载以及T接分支线时,会加剧载波通道的阻抗变化并甚至中断通信。低压用户配电网载波通道的阻抗变化更大(见图2),在负荷很重时,线路阻抗可能低于1Ω,这使得载波装置不能采用固定的阻抗输出。

六、线路衰减大且具有时变性

高压电力线载波通道衰减与频率的平方根成正比(见图3),且具有时变性。工频运行方式的改变、线路换位、其它载波机带外乱真发射、载波通道间的串扰、线路分支线的长短以及绝缘子污秽、刮强风、下小雨、线路冰凌及阻波器调谐线圈性能等多种因素会对载波通道的衰减产生影响。为此,电力线载波机必须设置至少大于30dB范围的自动增益调整电路。一般来说,从500kV到220V(电压等级从高到低),电压越低线路衰减越大,时变性越强,建立通道越困难。有时在中压或低压配电网载波通道的衰减大到难以实现通信的状况时,设计人员不得不采用特殊的通信方式或设计多通道电路来自动进行选择。

七、对外界的干扰

由于高压电力线载波频段限制在40~500kHz,只要控制载波机的谐波和交调乱真发射功率足够小,即可避免对外界的干扰。目前值得研究的是在220V线路上的扩频电线上网装置的干扰问题,这类装置为了实现高速数据通信,往往占用频带达30MHz甚至更多,据国外媒体报道,当电力线数据通信使用2~30MHz的频带传输数据时,将会对该频段的短波无线电广播、业余爱好者无线电台等产生影响。目前我国还没有建立这方面的标准,应当将这种干扰限制在何种程度还需要进一步研究[8]。

八、网络应用要求更高

现代通信对电力线载波的要求也更侧重于网络方面,需要将原先仅限于通道的概念扩展为网络概念。以往的电力线载波机主要靠自动盘和音转接口实现小范围的联网,而将载波机与调度机协同考虑,实现载波机协同变电站调度机的组网应用以及适当设置能够与通信网监测系统接口的数据采集变送器应当是我们近几年考虑的问题。与高压电力载波不同,电力线载波在中、低压线路上的应用在开始阶段就是建立在网络应用的基础之上的。

目前需要考虑的一些技术问题

一、高压电力线载波

信道容量长期以来一直是电力线载波通信存在关键问题,如何进一步实现更高速、多路的电力线载波通信是进一步发展的主要课题。目前我们已通过成功地采用数字复接技术扩展了频域4kHz带宽的信道容量(达到28.8kbits/s),今后还可在线路频率的回波抵消上进行一番深入研究。国内以前曾有过对模拟正交调制实现通道容量倍增的研究,随着技术的发展,高精度的DDS(直接频率合成)技术已经商业化,这一研究还可继续进行下去。同时,在

电力线载波频率资源趋于宽松的情况下,在载波线路频谱上采用比当前4kHz载波基本频带更宽的频带已成为可能,本文认为相关的载波标准应针对当前的实际情况考虑适当修改,并以此来规范现场的实际应用。 二、 数字多路复接类型的电力线载波机在进行远动数据传输时,有时会产生瞬时中断现象,这种现象对于语音传输无大影响,但是对于数据传输,尤其是一些重要的控制信号的传输将带来不良的后果。据分析,这一现象可能是由线路上的突发脉冲干扰引起的,因此,解决这一问题可以考虑两个方面,一是在载波机设计中有针对性地重点考虑如何解决(据说已有产品,还需现场验证);二是在现场应用中也要注意不能一概而论地上数字复接载波机,应针对实际应用的场合来选择合适的载波机类型。如果线路突发噪声比较高,频繁出现这样的瞬时中断时,在目前情况下应考虑采用DSP制式的数字化电力线载波机。

三、 载波机的接口类型目前有音转、二线E&M、四线E&M、小号、延长线、远动等,还需更趋于完善,尤其是与数字设备和通信网管理系统以及调度自动化系统的接口更需规范、适用。载波机与程控调度交换机的结合方式应更便于组网应用,使调度机的功能覆盖到全网。 四、 载波机的电路设计在性能指标冗余度和器件极限指标的余量上还需进行精细地设计(要有量化的指标),以保证设备的整机指标和长期运行的可靠性。整机的出厂不能仅以调试通过来判断设备的质量,而应按照企业内控标准,在经过适当的老化运行之后,以最终检验的结果来判断设备的出厂质量水平。

五、 目前载波机的设计主要针对高压和农电两个方向来进行,虽然我们研究了许多不同的制式,如呼叫信号有脉冲、单频移频、双频移频和带内编码型;导频制式有单导频、无导频、间歇导频;调制方式有一次、二次和三次调制,但在下面一些方面还需努力,如:组合功放、线路回音抵消、高频数字调制、抗突发噪声的数字复接器、自适应线路阻抗匹配、工艺水平、过程质量管理等。对于远动的防卫度问题,应当尽可能地设计为自适应地保持恒定的防卫度水平,而不是随着话音和远动电平的浮动而改变,这样将更有利于远动信号的传输可靠性。 六、载波机的电磁兼容性能,如电磁辐射抗扰度、静电放电、快速瞬变、浪涌等性能应当在整机设计阶段就加以考虑,并通过型式试验的检验,在当前嵌入式CPU成为载波机的中心控制单元的情况下更是这样。以前我们在这方面所做的工作不够,现在已具备所有的试验条件,可以按照国标的要求来进行。

中压电力线载波

一、10kV配电网的传输特性由于十分复杂,只能通过测试来得到该时段的传输特性。因此,应当努力进行配电网载波传输特性的研究和测试,摸清其能够为工程应用提供实际参考价值的内在特性及规律。

二、 目前的载波数据传输设备需要考虑在传输距离不能达到时的中继问题,不同的调制方法可能采取的中继方式有所不同,并需要现场验证。

三、 研究对付突发噪声干扰的有效方法,而不是简单地进行重发校验。目前的载波装置在传输数据可靠性方面的处理应当加强。

3.2.4 对于真正的大型、多用户的配电网自动化系统的载波数据传输,目前还缺少实际的第

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4