数学文化读书报告 1

数学史与数学方法论读书报告

读《数学史》之三次数学危机有感

读完《数学史》,心底不由得一阵感动。数学的殿堂是多么的华丽,我们这一本厚厚的书籍中蕴含着多少前人的探索。数学不仅是计算之学,也是艺术之学,其美之理性,令人深思,其美之深邃,让人陶醉。数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这便使数学成为人类文化中最基础的工具。而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

数学的发展决不是一帆风顺的,更是一部充满犹豫、徘徊,经历艰难曲折的情景剧。在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。

第一次数学危机——毕达哥拉斯曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现 这一长度既不能用整数,也不能用分数表示,而只能用一个新数 2来表示。希帕 索斯的发现导致了数学史上第一个无理数 2的诞生。小小 2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。 后来这场危机通过在几何学中引进不可通约量概念而得到解决。

第 1 页 共 1 页

第二次数学危机——知道吗?导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。 同时还产生了一些著名悖论如芝诺四悖论和贝克莱悖论。德国数学家戴德金通过他的“戴德金分割”从有理数扩展到实数,建立起了无理数理论。在同一年,魏尔斯特拉斯通过有界单调序列理论、康托尔通过有理数序列理论,完成了同一目标:他们都从有理数出发定义出无理数,从而建立了实数理论,而且在实数理论的基础上,建立起极限论的基本定理,从而使数学分析终于建立在实数理论的严格基础之上了。

第三次数学危机---19世纪后半叶,作为分析严格化的最高成就—康托尔首创的集合论成为现代数学的基础,不仅建立起来,而且被越来越多的数学家所接受、所应用。法国大数学家庞加莱骄傲地宣称:“借助集合论概念,我们可以建造整个数学大厦。现在我们可以说,完全的严格性已经达到了。”罗素开始打算从逻辑推出全部数学来,开始他还觉得顺利,但是不久就遇到了问题。康托尔曾经证明过不存在最大的基数,罗素对此有些疑惑,认为以世界上所有的集合为元素构成的集合应该是最大的(因而具有最大基数),这样他就发觉其中有些矛盾,结果产生了著名的罗素悖论,引起了关于数学基础的新的争论,从而造成了数学史上更为严重的关于数学基础的第三次危机。为了消除悖论,许多科学家开始分析悖论产生之因,寻求解决方案,他们规划了两种解决途径,其一是将整个集合论抛弃,把数学建立在别的理论基础上;其二是对康托尔的集合论加以改造,将集合论公理化。经过探索,他们选择了第二条解决途径。策墨罗,他提出了“有限抽象原则”和几条公理,及后再由弗兰克和斯柯伦补充修改,形成现在在数学上较为流行的公理系统——ZFS公理系统。随着公理化集合系统的建立,集合论中的悖论被成功排除了,因而从某种程度上来说,第三次数学危机解决了。 数学危机给数学发展带来了新的动力。在这三次危机中,数学基础的进步很快,数理逻辑也更加成熟。然而,矛盾和人们意想不到的事仍然不断出现,而且今后仍然会这样。就拿悖论的出现来说,从某种意义上并不是什么坏事,它预示着更新的创造和光明,推进了科学的进程,我们应用辨证的观点去看待它。

第2页,共3页

浪花是美丽的,数学更是美丽的,这么美的东西除了我们自己感受,还要在学生中去流传,将数学史渗透到数学教学中,可以拓宽学生的视野,提高学生素 质,激励学生奋发向上,也激发我们学习数学的兴趣。

第 3 页 共 3 页

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4