zemax光纤耦合

设计前的准备

Zemax公司感谢Suss MicroOptics SA公司的Reinhard Voelkel博士提供本文使用到的实验数据。

我们同时提供本文的的日文版本

本文描述了一种商用的光纤耦合器,系统使用SUSS MicroOptics FC-Q-250微透镜阵列来耦合两根康宁(Corning)SMF-28e光纤。如下图所示:

供应商提供的上述元件的参数如下:单模光纤,康宁SMF-28e 数值孔径 0.14 纤芯直径 8.3μm

模场直径@1.31μm 9.2±0.4μm

微透镜阵列,SUSS MicroOptics SMO39920 基片材料 熔融石英 基片厚度 0.9mm 内部透过率 >0.99 透镜直径 240μm 透镜节距 250μm

曲率半径 330μm

圆锥常数(Conic constant) 0 数值孔径 0.17

附件中的文件single mode coupler.zmx 是整个系统的Zemax文件。请注意一下几点:

物面到透镜的距离和透镜到像面的距离设定为0.1mm,是因为这比较接近实际情况。后面经过优化过程时候,这个尺寸还会发生变化;

透镜到像面的距离使用了Pick-up solve,以确保和前面的物面到透镜的距离之间相等。既然两组透镜和光纤之间是完全一致的(在制造公差之内),因而整个系统也就应该是空间反演对称和轴对称的(either way round);

两个透镜之间的距离设定为2mm,因为这个是实验中使用的数据。同样地,这个距离后面也将会被严格的优化;

系统孔径光阑设定为根据光阑尺寸浮动(float by stop size),而光阑设定在第一个透镜的后表面。这就意味着系统的孔径光阑由透镜的实际孔径决定。因而光纤的模式在这个系统中传输的过程中,就有可能受限于透镜的实际孔径。在这个例子中,光纤的模式要比透镜的实际孔径小很多。

当心“数值孔径”的多种不同定义。它有可能指的是边缘光束倾角的正弦值,有可能是光强降低到 1/e2时的光束倾角的正弦值(我们将会看到Zemax会在不同的场合使用这两种定义),也有可能定义为光强降到1%峰值强度时光束倾角的正弦值,康宁便使用这种定义。这些非常重要!

孔径上定义了高斯切趾(Gaussian apodization),用来产生光束的高斯分布。当前这只是一种近似,后面将会做进一步的精确的计算。

透镜孔径的大部分区域是衍射受限的光学质量的,并且被光纤模式照射到的区域是衍射受限的。

使用旁轴高斯光束计算

旁轴高斯光束算法是最简单可以用来分析光纤耦合的分析方法。不过,这种方法只能获得对系统性能初步的了解。

根据康宁的产品参数表,光纤在1.31μm波长下的模场直径为 9.2±0.4μm。因此,我们按照下图所示的情形设置旁轴高斯光束计算(Analysis>Physical Optics>Paraxial Gaussian Beam):

图中光束的束腰直径Waist总是相对于表面1来计算的,在本例中它和物面出于

同一个位置。因此,高斯光束的束腰直径4.6μm就位于源光纤的位置。光束然后传输经过光学系统。

从上图我们可以看出表面3上的1/e2光束直径是65μm,而表面4是70μm。这些表面的实际的物理半口径为120μm。也就是说大约两个光束直径以外的光将会被阻隔掉。另外需要注意的是像面并非位于光束最佳聚焦聚焦点处:像面处光斑的大小为5.3μm,而其实根据系统的对称性的假定,高斯束腰直径应该是4.6μm。我们将会优化表面1的厚度(同时也会通过Pick-up solve来控制表面5的厚度)来改进这些。请注意表面5的厚度是通过Pick-up solve来控制的,因为我们希望系统倒过来使用时也能得到同样的耦合效果:我们使用了完全相同的两组光纤和透镜(在制造公差范围内),因而我们期望最好的系统是输入输出互易的。

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4