专题三 牛顿运动定律
精做07 动力学的两类基本问题
1.(2018·江苏卷)如图所示,钉子A、B相距5l,处于同一高度.细线的一端系有质量为M的小物块,另一端绕过A固定于B。质量为m的小球固定在细线上C点,B、C间的线长为3l。用手竖直向下拉住小球,使小球和物块都静止,此时BC与水平方向的夹角为53°。松手后,小球运动到与A、B相同高度时的速度恰好为零,然后向下运动。忽略一切摩擦,重力加速度为g,取sin 53°=0.8,cos 53°=0.6。求:
(1)小球受到手的拉力大小F; (2)物块和小球的质量之比M:m;
(3)小球向下运动到最低点时,物块M所受的拉力大小T。 【答案】(1)F?5M68mMg488(T?Mg?mg (2)? (3)T?mg或T?Mg)
3m5(5m?M)5511【解析】(1)设小球受AC、BC的拉力分别为F1、F2 F1sin 53°=F2cos 53°
F+mg=F1cos 53°+ F2sin 53°且F1=Mg 解得F?5Mg?mg 3(2)小球运动到与A、B相同高度过程中 小球上升高度h1=3lsin 53°,物块下降高度h2=2l 机械能守恒定律mgh1=Mgh2 解得
M6? m5(3)根据机械能守恒定律,小球回到起始点.设此时AC方向的加速度大小为a,重物受到的拉力为T 牛顿运动定律Mg–T=Ma
1 / 13
小球受AC的拉力T′=T 牛顿运动定律T′–mgcos 53°=ma 解得T?8mMg488(T?mg或T?Mg)
(5m?M)55112.(2017·新课标全国Ⅱ卷)为提高冰球运动员的加速能力,教练员在冰面上与起跑线距离s0和s1(s1 (1)冰球与冰面之间的动摩擦因数; (2)满足训练要求的运动员的最小加速度。 2v0?v12s1(v0?v1)2 (2)a? 【答案】(1)?=22gs02s0 (2)设冰球运动的时间为t,则t?v0?v1④ ?g又s1?12at⑤ 2s1(v0?v1)2由③④⑤得a?⑥ 22s03.(2016·海南卷)水平地面上有质量分别为m和4m的物A和B,两者与地面的动摩擦因数均为μ。细绳的一端固定,另一端跨过轻质动滑轮与A相连,动滑轮与B相连,如图所示。初始时,绳处于水平拉直状态。若物块A在水平向右的恒力F作用下向右移动了距离s,重力加速度大小为g。求: 2 / 13 (1)物块B克服摩擦力所做的功; (2)物块A、B的加速度大小。 F?3?mgF?3?mg aB= 2m4m1【解析】(1)物块A移动了距离s,则物块B移动的距离为s1?s① 2【答案】(1)W=2μmgs (2)aA=物块B受到的摩擦力大小为f=4μmg② 物块B克服摩擦力所做的功为W=fs1=2μmgs③ 4.某工厂用倾角为37°的传送带把货物由低处运送到高处,已知传送带总长为L=50 m,正常运转的速度为v=4 m/s。一次工人刚把M=10 kg的货物放到传送带上的A处时停电了,为了不影响工作的进度,工人拿来一块m=5 kg带有挂钩的木板,把货物放到木板上,通过定滑轮用绳子把木板拉上去。货物与木板及木g=10 m/s2,sin 37°=0.6,cos 37°=0.8) 板与传送带之间的动摩擦因数均为0.8。(物块与木板均可看作质点, (1)为了把货物拉上去又不使货物相对木板滑动,求工人所用拉力的最大值; (2)若工人用F=189 N的恒定拉力把货物拉到L/5处时来电了,工人随即撤去拉力,求此时货物与木 板的速度大小; 3 / 13