第61课时 电磁感应中的动力学问题(题型研究课)
[命题者说] 电磁感应动力学问题是历年高考的一个热点,这类题型的特点一般是单棒或双棒在磁场中切割磁感线,产生感应电动势和感应电流。感应电流受安培力而影响导体棒的运动,构成了电磁感应的综合问题,它将电磁感应中的力和运动综合到一起,其难点是感应电流安培力的分析,且安培力常常是变力。这类问题能很好地提高学生的综合分析能力。
(一) 运动切割类动力学问题
考法1 单杆模型
[例1] (2016·全国甲卷) 水平面(纸面)内间距为l的平行金属导轨间接一电阻,质量为m、长度为l的金属杆置于导轨上。t=0时,金属杆在水平向右、大小为F的恒定拉力作用下由静止开始运动。t0时刻,金属杆进入磁感应强度大小为B、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动。杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ。重力加速度大小为g。求 (1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值。
单杆模型的分析方法
E(1)电路分析:导体棒相当于电源,感应电动势E=BLv,电流I=。
R+r
B2L2v
(2)受力分析:导体棒中的感应电流在磁场中受安培力F安=BIL,I=,F安=。
R+rR+r
BLv
(3)动力学分析:安培力是变力,导体棒在导轨上做变加速运动,临界条件是安培力和其他力达到平衡,这时导体棒开始匀速运动。 考法2 双杆模型
[例2] (1)如图1所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度为B的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计,导轨间的距离为l,两根质量均为m、电阻均为R的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直。在t=0时刻,两杆都处于静止状态。现有一与导轨平行,大小恒为F的力作用于金属杆甲上,使金属杆在导轨上滑动,试分析金属杆甲、乙的收尾运动情况。
(2)如图2所示,两根足够长的固定的平行金属导轨位于同一水平面内,导轨上横放着两根导体棒ab和cd,构成矩形回路。在整个导轨平面内都有竖直向上的匀强磁场,设两导体棒均可沿导轨无摩擦地滑行。开始时,棒cd静止,棒ab有指向棒cd的初速度。若两导体棒在运动中始终不接触,试定性分析两棒的收尾运动情况。
1
两类双杆模型对比 类型 模型 运动图像 运动过程 杆MN做变减速运动,杆PQ做将两杆视为整变加速运动;稳不受外力 定时,两杆以相最后a=0 等的速度匀速运动 开始时,两杆做变加速运动;稳受到恒力 定时,两杆以相同的加速度做匀加速运动 考法3 含电容器问题 将两杆视为整体,只受外力F,F最后a= 2m体,不受外力,分析方法 [例3] (2013·全国卷Ⅰ)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L。导轨上端接有一平行板电容器,电容为C。导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系。
这类题目易出现的错误是忽视电容器充电电流,漏掉导体棒所受的安培力,影响加速度的计算和导体棒运动情况
2
的判断。 [集训冲关]
1.如图所示,在竖直向下的磁感应强度为B的匀强磁场中,两根足够长的平行光滑金属轨道MN、PQ固定在水平面内,相距为L。一质量为m的导体棒cd垂直于MN、PQ放在轨道上,与轨道接触良好。轨道和导体棒的电阻均不计。
(1)如图1所示,若轨道左端M、P间接一阻值为R的电阻,导体棒在拉力F的作用下以速度v沿轨道做匀速运动。请通过公式推导证明:在任意一段时间Δt内,拉力F所做的功与电路获得的电能相等。
(2)如图2所示,若轨道左端接一电动势为E、内阻为r的电源和一阻值未知的电阻。闭合开关S,导体棒从静止开始运动,经过一段时间后,导体棒达到最大速度vm,求此时电源的输出功率。 (3)如图3所示,若轨道左端接一电容器,电容器的电容为C,导体棒在水平拉力的作用下从静止开始向右运动。电容器两极板间电势差随时间变化的图像如图4所示,已知t1时刻电容器两极板间的电势差为U1。求导体棒运动过程中受到的水平拉力大小。
2.(2017·上海松江区期末)如图所示,两根粗细均匀的金属杆AB和CD的长度均为L,电阻均为R,质量分别为3m和m,用两根等长的、质量和
电阻均不计的、不可伸长的柔软导线将它们连成闭合回路,悬跨在绝缘的、水平光滑的圆棒两侧,AB和CD处于水平。在金属杆AB的下方有高度为H的水平匀强磁场,磁感强度的大小为B,方向与回路平面垂直,此时CD处于磁场中。现从静止开始释放金属杆AB,经过一段时间(AB、CD始终水平),在AB即将进入磁场的上边界时,其加速度为零,此时金属杆CD还处于磁场中,在此过程中金属杆AB上产生的焦耳热为Q。重力加速度为g,试求:
(1)金属杆AB即将进入磁场上边界时的速度v1;
(2)在此过程中金属杆CD移动的距离h和通过导线截面的电量q;
(3)设金属杆AB在磁场中运动的速度为v2,通过计算说明v2大小的可能范围。
(二) 变化磁场类动力学问题
[典例] 电磁弹射是我国最新研究的重大科技项目,原理可用下述模型说明。如图甲所示,虚线MN右侧存在一个竖直向上的匀强磁场,一边长为L的正方形单匝金属线框abcd放在光滑水平面上,电阻为R,质量为m,ab边在磁场外侧紧靠 MN虚线边界。t=0时起磁感应强度B随时间t的变化规律是B=B0+kt(k为大于零的常数),空气阻力忽略不计。
3