高中数学课时达标训练二余弦定理含解析新人教A版必修5

课时达标训练(二) 余 弦 定 理

[即时达标对点练]

题组1 利用余弦定理解三角形

1.已知在△ABC中,a=1,b=2,C=60°,则c等于( ) A.3 B.2 C.5 D.5 解析:选A 由余弦定理,得

c2=12+22-2×1×2×cos 60°=3,

∴c=3,故选A.

2.在△ABC中,a=7,b=43,c=13,则△ABC的最小角为( ) A.

ππππ B. C. D. 36412

解析:选B ∵a>b>c, ∴C为最小角,由余弦定理得

a2+b2-c272+(43)2-(13)23cos C===,

2ab22×7×43

π

∴C=. 6

3.已知在△ABC中,b=ac且c=2a,则cos B等于( ) 1322A. B. C. D. 4443解析:选B ∵b=ac,c=2a, ∴b=2a,

2

2

2

2

a2+c2-b2a2+4a2-2a23∴cos B===. 2

2ac4a4

C5

4.(2018·全国卷Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB=( )

25

A.42 B.30 C.29 D.25

C5

解析:选A ∵cos=,

25

?3?222

在△ABC中,由余弦定理,得AB= AC+BC-2AC·BC·cos C=52+12-2×5×1×?-?

?5?

=32,

∴AB=42.

5.(2018·浙江高考)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=7,b

1

=2,A=60°,则sin B=_______,c=________.

abb2321

解析:由正弦定理=,得sin B=·sin A=×=.

sin Asin Ba772

由余弦定理a=b+c-2bccos A, 得7=4+c-4c×cos 60°,

即c-2c-3=0,解得c=3或c=-1(舍去). 答案:

21

3 7

2

2

2

2

2

7

6.设ABC的内角A,B,C所对的边分别为a,b,c,且a+c=6,b=2,cos B=.求

9

a,c的值.

解:由余弦定理b=a+c-2accos B, 得b=(a+c)-2ac(1+cos B). 7

又b=2,a+c=6,cos B=,

9所以ac=9, 解得a=3,c=3.

7.已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos+cos A2=0.

(1)求角A的值;

(2)若a=23,b=2,求c的值. 解:(1)∵cos A=2cos-1,

2∴2cos=cos A+1.

2又2cos+cos A=0,

2∴2cos A+1=0, 1

∴cos A=-,

2∴A=120°.

(2)由余弦定理知a=b+c-2bccos A , 1

又a=23,b=2,cos A=-,

2

2

2

2

22

2

2

2

2

2

2

2

AAAA?1?222

∴(23)=2+c-2×2×c×?-?,

?2?

</

>>閻忕偞娲栫槐鎴﹀礂閵婏附鐎�<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4