第一部分:数值模拟技术研究文献综述
浅析数值模拟技术
1.引言
近年来,随着我国大规模地进行“西部大开发”和“南水北调”等巨型工程,越来越多的岩土工程难题摆在我们面前,单纯依靠经验、解析法显然已不能有效指导工程问题的解决,迫切需要更强有力的分析手段来进行这些问题的研究和分析。自R.W. Clough 上世纪60年代末首次将有限元引入某土石坝的稳定性分析以来,数值模拟技术在岩土工程领域取得了巨大的进步,并成功解决了许多重大工程问题。特别是个人电脑的普及及计算性能的不断提高,使得分析人员在室内进行岩土工程数值模拟成为可能。在这样的背景下,数值模拟特别是三维数值模拟技术逐渐成为当前中国岩土工程研究和设计的主流方法之一,也使得岩土工程数值模拟技术成为当今高校和科研院所岩土工程专业学生学习的一个热点。
采用大型通用软件对岩土工程进行数值模拟计算,在目前已成为项目科研、工程设计、风险评估等岩土类项目的必须,学习和掌握Ansys、FLAC3D、UDEC等数值计算软件已成为学校、科研院所对工程从业人员的基本要求。
数值模拟方法主要有限元法、边界元法、加权余量法、半解析元法、刚体元法、非连续变形分析法、离散元法、无界元法和流形元法等,各种方法都有其对应的软件。
2.数值模拟的发展趋势
可以说, 继理论分析和科学试验之后, 数值模拟已成为科学技术发展的主要手段之一。随着软件技术和计算机技术的发展, 目前国际上数值模拟软件发展呈现出以下一些趋势:
(1). 由二维扩展为三维。早期计算机的能力十分有限,受计算费用和计算机储存能力的限制,数值模拟程序大多是一维或二维的,只能计算垂直碰撞或球形爆炸等特定问题。随着第三代、第四代计算机的出现, 才开始研制和发展更多的三维计算程序。现在,计算程序一般都由二维扩展到了三维,如LS-DYNA2D和LS - DYNA3D、AUTODYN2D 和 AUTO-DYN3D。
(2).从单纯的结构力学计算发展到求解许多物理场问题。数值模拟分析方法最早是从结构化矩阵分析发展而来,逐步推广到板、壳和实体等连续体固体力学分析,实践证明这是一种非常有效的数值模拟方法。近年来数值模拟方法已发展到流体力学、温度场、电传导、磁场、渗流等求解计算,最近又发展到求解几个交叉学科的问题。例如内爆炸时,空气冲击波使墙、板、柱产生变形,而墙、板、柱的变形又反过来影响到空气冲击波的传播,这就需要用固体力学和流体动力学的数值模拟结果交叉迭代求解。
(3).由求解线性问题进展到分析非线性问题。随着科学技术的发展,线性理论已经远远不能满足设计的要求。诸如岩石、土壤、混凝土等,仅靠线性计算理论就不足以解决遇到的问题,只有采用非线性数值算法才能解决。众所周知,非线性的数值模拟是很复杂的,它涉及到很多专门的数学问题和运算技巧,很难为一般工程技术人员所掌握。为此,近年来国外一些公司花费了大量的人力和资金,开发了诸如LS- DYNA3D、ABAQUS和AU-TODYN等专长求解非线性问题的有限元分析软件,并广泛应用于工程实践。这些软件的共同特点是具有高效
1
的非线性求解器以及丰富和实用的非线性材料库。 3.数值模拟的基本原理
一般而言,岩、土体处于三向受力状态,其破坏模式往往表现为压-剪破坏和拉伸破坏。要分析和预测岩、土体在外力作用下的变形、破坏,就需要对其变形、破坏情况进行较为直观地再现。岩土工程数值模拟正是从岩、土体的受力状态出发,来分析和预测岩、土体破坏情况的一种手段。
其基本原理是以典型试样的物理试验(室内试验或现场试验)获得的强度来表征整个地质体的岩、土体强度,以边界条件替代地质体周围所受的约束条件,借由本构关系表达岩、土体在外力作用下的应力-应变特性,最终了解、预测岩、土体变形破坏情况。它具有鲜明的时代特征,以计算机为实现平台,是信息化时代的产物。通过与其它方法(如人工智能、人工生命科学、随机模拟、模糊数学、灰色理论以及分形理论等)交叉共生、相互耦合嫁接,以获得更广阔的发展空间。
从广义上来说,岩、土体的室内试验和原位试验也是一种模拟手段,本文称之为物理模拟。之所以如此称谓,是因为它们也是为较真实地近似再现岩、土体在其所赋存的环境中所处的受力状态所采用的一种手段。从这个意义上来说,它与数值模拟的基本原理是相同的,因此,可以将数值模拟称为虚拟实验室模拟。所不同的是,数值模拟除可以进行常规尺寸模型的模拟外,还可以进行宏观和细观两个层面尺寸模型的模拟,而其输入的参数则需通过物理模拟来提供。因此,数值模拟是与物理模拟并行发展、相互补充和相互验证的试验系统。
相较于其它方法,数值模拟具有可重复和操作性强,费用低廉,不受模型尺寸控制,可视化程度高的优点,能有效延伸和扩展分析人员的认知范围,为分析人员洞悉岩、土体内部的破坏机理提供了强有力的可视化手段。
当然作为一种分析方法,它也有自身的缺点,主要是易受制于岩、土体结构的描述和模型概化的准确性及合理性;受制于岩、土体物理试验模拟结果的准确性;受制于岩、土体本构关系与实际岩、土体力学响应特性拟合程度的高低。 4.数值分析方法中存在的问题
到目前为止,研究计算工程的文章很多,但真正用于实际工程的数值分析方法(例如有限元法等)却较少。部分原因在于有较多不成功应用的实例。为什么会有这种情况,原因是多方面的,下面列出几条仅供参考:
(1)对岩土工程数值分析方法缺乏系统的知识和深入的理解,出现问题时不知道在什么情况下属于理论问题或数学模型问题;在什么情况下是属于计算方法问题或本构模型问题;在什么情况下是参数的确定问题或计算本身的问题等。
(2)各种本构模型固有的局限性。具有多相性土的物理力学性质太复杂,难以准确地用数学模型和本构模型描述。例如邓肯一张模型不能反映剪胀性,不能反映压缩与剪切的交叉影响;模型只能考虑硬化,不能反映软化;模型不能反映各向异性。剑桥模型也仅能考虑硬化而不能反映软化,不能反映土的剪切膨胀和各向异性,不能用于超固结土等。
(3)现有的试验手段和设备不能提供适当、合理和精确的参数。靠少数样本点所获得的参数难以准确地描述整个空间场地的物理力学性能;土的参数因土样扰动难以高质量的获取,其精度很差。有些模型要求较多的参数,但这些参数用常规的试验手段和设备难以获取等。岩土工程中如何应用精确的数学模型和本构
2
模型是一个值得注意的问题。在一般结构分析中,因材料的力学性质简单、均匀,不确定性较小,一般采用较精确的数学模型会得到较精确的分析结果。但就土这种材料而言,因其不确定性非常大,其情况发生了很大的变化。众所周知,场地土性及其参数勘察结果的精度和准确性是很差的,由此导致既使采用了很精确的数学模型,但因输入参数的精度不能与之相匹配,其计算结果同样会很差。采用精确的数学模型还会给人造成一种错觉,让人觉得其计算结果也一定会更好、更可靠。这样可能使人们忽略了精确的数学公式也照样会有出错的可能性 。只有当输入参数的质量和精度很高,并能与数学模型的精度相匹配时,才有可能得到较为准确的计算结果。 5.结语
20世纪60年代以后,由于电子计算机的飞速发展使岩土工程数值分析方法得到不断发展和完善,并用于岩土工程实践。虽然在工程实际使用中数值分析方法存在一些问题,但只要认清问题的实质,并采取措施去解决它,相信随着岩土工程数值分析方法的不断发展及其工程经验的不断积累,在工程实践中将会得到越来越多的应用,它必将成为岩土工程分析中的有力工具。 参考文献
[1] 张森,言志信,段建. 边坡开挖数值模拟及其稳定性评价研究[J]. 西部探矿工程. (3).
[2] 汪军,刘海波. 边坡稳定性的有限元数值模拟建模[J]. 华北科技学院学报. (0).
[3] 陈印东,刘叔灼. 基于强度折减法的边坡稳定性分析[J]. 科学技术与工程. (0).
[4] 王浩. 类土质路堑高边坡典型失稳机制与加固工程对策的数值模拟研究[D]. 铁道部科学研究院, 2004.
[5] 张超,杨春和. 有限差分强度折减法求解边坡稳定性[J]. 土木工程与管理学报. (4).
[6] 郑颖人,赵尚毅,宋雅坤. 有限元强度折减法研究进展[J]. 后勤工程学院学报. (0).
[7] 邹宝祥,李明,唐伟华. 某大桥边坡稳定性FLAC3D数值模拟分析[J]. 山西建筑. (3).
[8] 郭辉. 山西晋城土质垂直高边坡稳定性计算及数值模拟研究[D]. 西安科技大学, 2011.
[9] 郭志柳,陈建东,吴鹏. 填土物理力学性质对路堤边坡稳定性影响的数值模拟[J]. 江西理工大学学报. (9).
3
第二部分:数值模拟技术FLAC上机报告
3D
FLAC数值模拟上机题
计算模型分别如图1、2、3所示,边坡倾角分别为30°、45°、60°,岩土体参数为: 密度ρ=2500 kg/m3, 弹性模量E=1×108 Pa,泊松比μ=0.3,
抗拉强度σt=0.8×106 Pa,内聚力C=4.2×104 Pa,摩擦角φ=17°
试用FLAC3D软件建立单位厚度的计算模型,并进行网格剖分,参数赋值,设定合理的边界条件,利用FLAC3D软件分别计算不同坡角情况下边坡的稳定性,并进行结果分析。 附 换算公式:
1 kN/m3= 100 kg/m3
剪切弹性模量:G?3D
E=3.846e7
2(1??)体积弹性模量:K?E=8.33e7
3(1?2?)25.36404010060图1 倾角为30°的边坡(单位:m)
计算命令流如下: new
gen zone brick p0 0 0 0 p1 100 0 0 p2 0 1 0 p3 0 0 40 size 50 1 10
gen zone brick p0 40 0 40 p1 100 0 40 p2 40 1 40 p3 74.64 0 60 p4 100 1 40& p5 74.64 1 60 p6 100 0 60 p7 100 1 60 size 30 1 10 fix x range x -0.1 0.1 fix x range x 99.9 100.1 fix y
fix z range z 0.1 -0.1 model elas
prop density 2500 bulk 3e9 shear 1e9 set gravity 0 0 -10 solve
ini xdisp 0 ydisp 0 zdisp 0 ini xvel 0 yvel 0 zvel 0
4
30°
model mohr
prop density 2500 bulk 8.33e7 shear 3.846e7 c 42000 fric 17 ten 800000 solve fos file slope30.sav associated 计算结果如下:
图1-a,网格剖分图 图1-b,速度矢量图
图1-c,速度等值线图 图1-d,位移等值线图
最终计算边坡的稳定性系数为:Fs=1.49
分析:
3D
30°边坡稳定性系数采用的是FLAC内置的强度折减法求解,稳定性系数 1.49>1,从稳定性系数系数可以判断该边坡处于安全状态。坡面最大速度为0.25mm/s,随着深度的增加,竖向应力逐渐增大。坡肩处出现下沉,最大值达到3.54m。
40404010060图2 倾角为45°的边坡(单位:m)
45° 5