人教版七年级数学上册第一章有理数知识点归纳

人教版七年级数学上册第一章有理数知识点归纳

1.有理数: (1)凡能写成

q(p,q为整数且p?0)形式的数,都是有理数.正整数、0、负整数统称整数;正p分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;

???正整数?正整数正有理数?正分数??整数?零?????(2)有理数的分类: ① 有理数?零 ② 有理数??负整数

???负整数?正分数负有理数?分数???负分数??负分数??(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数? 0和正整数;a>0 ? a是正数;a<0 ? a是负数;

a≥0 ? a是正数或0 ? a是非负数;a≤ 0 ? a是负数或0 ? a是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0 ? a+b=0 ? a、b互为相反数. 4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

?a(a?0)??a(a?0)(2) 绝对值可表示为:a??0(a?0)或a?? ;绝对值的问题经常分类讨论;

?a(a?0)????a(a?0)(3)

aa?1?a?0 ;

aa??1?a?0;

(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,

ab?a. b5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比

0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0. 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么a的倒数是倒数是本身的数是±1;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数. 7. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10 有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个

数决定.

11 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac .

1;a12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即无意义. 13.有理数乘方的法则: (1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a

-b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n . 14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a2是重要的非负数,即a2≥0;若a2+|b|=0 ? a=0,b=0;

0.12?0.01??2?1?1(4)据规律 2??底数的小数点移动一位,平方数的小数点移动二位.

10?100??????????????a0

15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,

这种记数法叫科学记数法.

16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.

19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4