Stata命令大全 面板数据计量分析与软件实现

Stata命令大全 面板数据计量分析与软件实现

说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。本人做了一定的修改与筛选。

*----------面板数据模型 * 1.静态面板模型:FE 和RE

* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计) * 3.异方差、序列相关和截面相关检验 * 4.动态面板模型(DID-GMM,SYS-GMM) * 5.面板随机前沿模型

* 6.面板协整分析(FMOLS,DOLS)

*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA) *** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。常应用于地区经济差异、FDI溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型

*说明:STATA与Matlab结合使用。常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------

* -------- 一、常用的数据处理与作图 ----------- * ---------------------------------

* 指定面板格式

xtset id year (id为截面名称,year为时间名称) xtdes /*数据特征*/

xtsum logy h /*数据统计特征*/ sum logy h /*数据统计特征*/

*添加标签或更改变量名 label var h \人力资本\

1

rename h hum

*排序

sort id year /*是以STATA面板数据格式出现*/ sort year id /*是以DEA格式出现*/

*删除个别年份或省份 drop if year<1992

drop if id==2 /*注意用==*/

*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel格式,需要用egen命令) egen year_new=group(year) xtset id year_new

**保留变量或保留观测值 keep inv /*删除变量*/ **或

keep if year==2000

**排序

sort id year /*是以STATA面板数据格式出现 sort year id /*是以DEA格式出现

**长数据和宽数据的转换 *长>>>宽数据

reshape wide logy,i(id) j(year)

*宽>>>长数据

reshape logy,i(id) j(year)

**追加数据(用于面板数据和时间序列)

xtset id year *或者 xtdes

2

tsappend,add(5) /表示在每个省份再追加5年,用于面板数据/

tsset *或者 tsdes

.tsappend,add(8) /表示追加8年,用于时间序列/

*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y) bysort year:corr Y X Z,cov

**生产虚拟变量 *生成年份虚拟变量 tab year,gen(yr) *生成省份虚拟变量 tab id,gen(dum)

**生成滞后项和差分项 xtset id year

gen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/ gen ylag2=L2.y

gen dy=D.y /*产生差分项*/

*求出各省2000年以前的open inv的平均增长率 collapse (mean) open inv if year<2000,by(id)

变量排序,当变量太多,按规律排列。可用命令 aorder 或者

order fdi open insti

3

*----------------- * 二、静态面板模型 *-----------------

*--------- 简介 -----------

* 面板数据的结构(兼具截面资料和时间序列资料的特征) use product.dta, clear browse

xtset id year xtdes

* --------------------------------- * -------- 固定效应模型 ----------- * ---------------------------------

* 实质上就是在传统的线性回归模型中加入 N-1 个虚拟变量, * 使得每个截面都有自己的截距项,

* 截距项的不同反映了个体的某些不随时间改变的特征 *

* 例如: lny = a_i + b1*lnK + b2*lnL + e_it * 考虑中国29个省份的C-D生产函数

*******-------画图------* *散点图+线性拟合直线

twoway (scatter logy h) (lfit logy h)

*散点图+二次拟合曲线

twoway (scatter logy h) (qfit logy h)

*散点图+线性拟合直线+置信区间

twoway (scatter logy h) (lfit logy h) (lfitci logy h)

4

*按不同个体画出散点图和拟合线,可以以做出fe vs re的初判断*

twoway (scatter logy h if id<4) (lfit logy h if id<4) (lfit logy h if id==1) (lfit logy h if id==2) (lfit logy h if id==3)

*按不同个体画散点图,so beautiful!!!*

graph twoway scatter logy h if id==1 || scatter logy h if

id==2,msymbol(Sh) || scatter logy h if id==3,msymbol(T) || scatter logy h if id==4,msymbol(d) || , legend(position(11) ring(0) label(1 \北京\label(2 \天津\河北\山西\

**每个省份logy与h的散点图,并将各个图形合并 twoway scatter logy h,by(id) ylabel(,format(%3.0f)) xlabel(,format(%3.0f))

*每个个体的时间趋势图*

xtline h if id<11,overlay legend(on)

* 一个例子:中国29个省份的C-D生产函数的估计 tab id, gen(dum) list

* 回归分析

reg logy logk logl dum*, est store m_ols

xtreg logy logk logl, fe est store m_fe

est table m_ols m_fe, b(%6.3f) star(0.1 0.05 0.01)

* Wald 检验

test logk=logl=0 test logk=logl

* stata的估计方法解析

* 目的:如果截面的个数非常多,那么采用虚拟变量的方式运算量过大 * 因此,要寻求合理的方式去除掉个体效应

* 因为,我们关注的是 x 的系数,而非每个截面的截距项 * 处理方法: *

5

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4