第一章 1、氨基酸的等电点( PI )( isoelectric point ): 在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相同,成为碱性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。 2、谷胱甘肽(GSH):由Glu、Cys、Gly组成,分子中半胱氨酸的巯基是该化合物的主要功能基团。(1)是体内重要的还原剂,保护蛋白质和酶分子中的巯基免遭氧化,使蛋白质处于活性状态。(2)具有嗜核性,与外源的嗜电子毒物(致癌剂、药物)结合,从而阻断这些化合物与DNA、RNA或蛋白质结合,以保护机体免遭毒物侵害。 3、蛋白质的一级结构(primary structure):在蛋白质分子中,从N-端至C-端的氨基酸排列顺序。稳定其主要化学键是肽键和二硫键。 4、蛋白质的二级结构(secondary structure):指蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置。稳定它的主要化学键是氢键。主要包括α螺旋、β折叠、β转角、无规卷曲。
5、肽单元(肽平面)(peptide unit):多肽分子中肽键的6个原子(Cα1、C、O、N、H、Cα2)位于同一平面,即肽单元。是蛋白质二级结构的主要结构单位。
6、α螺旋(α-helix):以α碳原子为转折点,以肽键平面为单位,盘曲成右手螺旋的结构。螺旋上升一圈含3.6个氨基酸残基,螺距0.54nm。氨基酸的侧链伸向螺旋的外侧。螺旋的稳定是靠氢键。氢键方向与长轴平行。
7、蛋白质的三级结构(tertiary structure):指整条肽链中全部氨基酸残基的相对空间位置,即整条肽链所有原子在三维空间的排布位置。其形成与稳定主要依靠次级键,如疏水键、盐键、氢键、范德华力等。
8、结构域(domain):是三级结构层次上的局部折叠区,折叠得较为紧密,各有独特的空间构象,并承担不同的生物学功能。
9、分子伴侣(molecular chaperons):一类帮助新生多肽链正确折叠的蛋白质。它可逆地与未折叠肽段的疏水部分结合随后松开,如此反复进行,可防止错误的聚集发生,使肽链正确折叠。其对蛋白质分子中二硫键的形成起到非常重要的作用。
10、蛋白质的四级结构:(quarternary structure):两个或两个以上的亚基之间彼此以非共价键相互作用形成更为复杂的空间构象。各亚基间的结合力主要是氢键和离子键。
11、蛋白质的等电点( PI ){ isoelectric point }:当蛋白质溶液处于某一PH时,蛋白质解离成正、负离子的趋势相等,静电荷为零,此时溶液的PH称为蛋白质的等电点。
12、蛋白质变性(denaturation):在某些理化因素下,蛋白质的特定空间构象被破坏,有序的空间结构变为无序,从而导致其理化性质的改变以及生物活性的丧失。其主要发生在二硫键和非共价键的破坏,变性不涉及一级结构的变化。
13、蛋白质的复性(renaturation):若蛋白质变性程度较低,去除变性因素后,有些蛋白质仍可恢复或部分恢复其原有的构象和功能。
第二章 1、DNA变性(DNA denaturation):某些理化因素会导致DNA双链互补碱基对之间的氢键断裂,使双链DNA解离为单链。只改变其二级结构,不涉及它的核苷酸序列。
2、DNA复性(退火 annealing)(DNA renaturation):变性的DNA在适当条件下,两条彼此分开的DNA单链重新缔合成双螺旋结构的过程。
3、DNA解链温度(溶解温度)(melting temperature)(T M):在解链过程中,紫外吸收值达到最大值的50%时所对应的温度。 4、分子杂交(hybridization):两条来源不同的核酸单链间,因部分碱基互补,经退火处理可以形成杂交双螺旋结构。
第三章 1、酶的活性中心(active center):酶的必需基团在一级结构上可能相距很远,但必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能和底物特异结合并将底物转化为产物。包括结合基团和催化基团。
2、同工酶(isoenzyme、isozyme):可以催化相同的化学反应,但酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。 3、酶的特异性(specificity):一种酶仅作用于一种或一类化合物,或一定的化学键,催化一定的化学反应并生成一定的产物。酶的这种特性称为酶的特异性或专一性。
4、米氏常数(Km):酶的特性常数之一,数值等于酶促反应速率为最大速率一半时的底物浓度,单位为mol/L。Km值大小反映酶与作用物亲和力的大小。
5、酶的变构调节(allosteric regulation):某些小分子化合物与酶的活性中心以外的某一部位发生非共价键结合,引起酶分子构象改变,从而使酶催化活性改变.
6、酶的化学修饰调节(chemical modification):酶蛋白肽链上的一些基团在另一种酶的催化下,可与某种化学基团发生可逆的共价修饰,使酶的构象发生改变,从而改变酶活性的过程。酶的化学修饰主要有磷酸化与脱磷酸、腺苷化与脱腺苷、甲基化与脱甲基等。 7、酶原(zymogen):有些酶在细胞内合成或出分泌,或在其发挥催化功能前只是酶的无活性前提,这种前体即是酶原。
第四章 1、糖酵解(glycolysis):在机体缺氧条件下,葡萄糖经过一系列酶促反应生成丙酮酸进而还原生成乳酸的过程。其反应场所在细胞胞质(胞浆)。
2、底物水平磷酸化(substrate-level phosphorylation):与脱氢反应偶联,直接将高能代谢物分子中的能量转移至ADP(GDP)中,生成ATP(GTP)的过程。
3、糖的有氧氧化(aerobic oxidation):指在机体氧供充足时,葡萄糖彻底氧化成H2O和CO2,并释放出能量的过程。是机体主要供能方式。部位:胞液及线粒体。
4、三羧酸循环(tricarboxylic acid cycle . TCA cycle):指乙酰辅酶A和草酰乙酸缩合生成含三个羧基的柠檬酸,反复进行脱氢脱羧,又生成草酰乙酸,再重复循环反应的过程。反应部位为线粒体。 5、磷酸戊糖途径(pentose phosphate pathway):葡萄糖生成磷酸戊糖及NADPH+H+,前者再进一步转变成3-磷酸甘油醛和6-磷酸果糖的反应过程。其意义是生成磷酸戊糖和NADPH+H 6、糖原分解 (glycogenolysis ):习惯上指肝糖原分解成为葡萄糖的过程,亚细胞定位于胞浆。
7、糖异生(gluconeogenesis):从非糖物质(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖原的过程。主要在肝、肾细胞的胞浆及线粒体中进行。
第五章 1、脂肪动员(fat mobilization):储存在脂肪中的甘油三酯被脂酶逐步水解为游离脂酸(FFA)和甘油并释放入血,通过血液运输至其他组织氧化利用的过程。 关键酶:激素敏感性甘油三脂肪酶(HSL)
2、酮体(ketone body):脂酸β-氧化后形成的乙酰CoA在肝细胞线粒体中转化为酮体,即脂酸在肝细胞分解氧化时产生的特有中间代谢物,包括:乙酰乙酸、β-羟丁酸、丙酮。
第六章 1.生物氧化(biological oxidation):物质在生物体内进行的氧化,主要指糖、脂肪、蛋白质等在体内分解时逐步释放能量,最终生成CO2和H2O的过程。
2.呼吸链(respiratory chain)(电子传递链)(electron transfer chain):代谢物脱下的成对氢原子(2H)通过多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水,这一系列酶和辅酶称呼吸链 。
3、底物水平磷酸化(substrate-level phosphorylation):与脱氢反应偶联,直接将高能代谢物分子中的能量转移至ADP(GDP)中,生成ATP(GTP)的过程。
4、氧化磷酸化(oxidative phosphorylation):由代谢物脱下的氢,经线粒体氧化呼吸链电子传递释放能量,偶联驱动ADP磷酸化生成ATP的过程。
5、P/O值:氧化磷酸化过程中,每消耗1/2摩尔O2所消耗无机磷的摩尔数所生成ATP的摩尔数。即一对电子通过氧化呼吸链传递给氧所生成的ATP数。
第七章 1、营养必须氨基酸:在人体内不能自身合成,必须由食物提供的氨基酸。包括:甲硫氨酸(Met)、色氨酸(Trp)、赖氨酸(Cys)、缬氨酸(Val)、异亮氨酸(Ile)、亮氨酸(Leu)、苯丙氨酸(Phe)、苏氨酸(Thr)(假设来写一两本书)。
2、蛋白质的腐败作用:未被消化的蛋白质和未被吸收的氨基酸在大肠下部受大肠杆菌的分解作用。是肠道细菌本身的代谢过程,以无氧分解为主。
3、氨基酸代谢库(metabolic pool):分布于体内各处参与代谢的氨基酸。分为外源性(食物蛋白质经消化而被吸收的氨基酸)和内源性(体内组织蛋白质降解产生的氨基酸、体内合成的非必须氨基酸) 4、氨基酸的脱氨基作用: 指氨基酸脱去α-氨基生成相应α-酮酸的过程
5、氨基酸的转氨基作用:在转氨酶的催化下, 某一氨基酸的a-氨基转移到另一种a-酮酸的酮基 上,生成相应的氨基酸;原来的氨基酸则转变成a-酮酸。
6、联合脱氨基作用:是体内氨基酸脱氨基的主要方式,两种脱氨基方式的联合作用(转氨基作用和氧化脱氨基作用),使氨基酸脱下α-氨基生成α-酮酸的过程。