广东省中山一中,朱欢收集整理,欢迎学习交流
2011年—2018年新课标全国卷理科数学试题分类汇编(逐题解析版)
1.集合与简易逻辑
一、选择题
(2018·新课标Ⅰ,理2) 已知集合A?x|x2?x?2?0,则CUA?( )
???x|?1?x?2? B. ?x|?1?x?2? C.?x|x??1???x|x?2? D. ?x|x??1???x|x?2? A.
(2018·新课标Ⅱ,理2) 已知集合A?A.9
B.8
??x,y?x
2?y2≤3,x?Z,y?Z,则A中元素的个数为( )
C.5
D.4 B?( )
?1,2?,则A(2018·新课标Ⅲ,理1)已知集合A??x|x?1≥0?,B??0,A.?0?
B.?1?
2? C.?1,
1,2? D.?0,x(2017,新课标Ⅰ,1)已知集合A?xx?1,B?x3?1,则( )
????A.AB?{x|x?0} B.AB?R C.AB?{x|x?1} D.AB??
(2017·新课标Ⅱ,2)设集合???1,2,4?,??xx?4x?m?0.若?2?2????1?,则??( )
A.?1,?3? B.?1,0? C.?1,3? D.?1,5?
(2017·新课标Ⅲ,1)已知集合A=A?(x,y)x?y?1,B?(x,y)y?x,则A数为( )
A.3
B.2
C.1
D.0
?2???B中元素的个
2(2016,新课标Ⅰ,1)设集合A?{xx?4x?3?0},B?{x2x?3?0},则AB?( )
A.(?3,?)
32B.(?3,)
32C.(1,)
32
D.(,3)
32(2016·新课标Ⅱ,2)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则AB?( )
A.{1}
B.{1,2}
C.{0,1,2,3} D.{-1,0,1,2,3}
(2016·新课标Ⅲ,1)设集合S??x|(x?2)(x?3)?0?,T??x|x?0? ,则SIT=( )
A. ?2,3? B. ???,2??3,??? C. ?3,??? D. ?0,2??3,???
2n(2015·新课标Ⅰ,3)设命题p:?n?N,n?2,则?p为( )
2n2n2n2nA.?n?N,n?2 B.?n?N,n?2 C.?n?N,n?2 D.?n?N,n?2
(2015·新课标Ⅱ,1)已知集合A={-2,-1,0,2},B={x|(x-1)(x+2)<0},则A∩B =( )
A.{-1,0}
B.{0,1}
C.{-1,0,1}
D.{0,1,2}
广东省中山一中,朱欢收集整理,欢迎学习交流
(2014·新课标Ⅰ,1)已知集合A={x|x2?2x?3?0},B=x?2?x?2,则A?B=( )
??A.[-2,-1] B.[-1,2) C.[-1,1] D.[1,2)
(2014·新课标Ⅱ,1)设集合M={0, 1, 2},N=?x|x2?3x?2?0?,则MA.{1} A.A∩B=
B.{2}
C.{0,1}
D.{1,2}
N=( )
(2013·新课标Ⅰ,1)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( )
B.A∪B=R C.B?A D.A?B
(2013·新课标Ⅱ,1)已知集合M={x|(x-1)2 < 4, x∈R},N={-1,0,1,2,3},则M ∩ N =( )
A.{0, 1, 2}
B.{-1, 0, 1, 2}
C.{-1, 0, 2, 3}
D.{0, 1, 2, 3}
(2012·新课标Ⅰ,1)已知集合A={1,2,3,4,5},B={(x,y)|x?A,y?A,x?y?A},则B中包含元素的个数为( )
A.3 B.6
C.8 D.10
(2012·新课标Ⅱ,1)已知集合A={1, 2, 3, 4, 5},B={(x,y)| x∈A, y∈A, x-y∈A},则B中所含元素的个数为
( ) A. 3
B. 6
C. 8
D. 10
(2011·新课标Ⅱ,10)已知a与b均为单位向量,其夹角为θ,有下列四个命题中真命题是( )
?2?P:a+b?1???0,1??3?2?? ?
P:a?b?1???,??2???3????????P3:a?b?1????0,? P4:a?b?1????,??
?3??3?A. P1,P4
B.P1,P3
C.P2,P3
D.P2,P4
广东省中山一中,朱欢收集整理,欢迎学习交流
2011年—2018年新课标全国卷理科数学试题分类汇编(逐题解析版)
1.集合与常用逻辑用语(解析版)
一、选择题
(2018·新课标Ⅰ,理2) 已知集合A?x|x2?x?2?0,则CUA?( )
???x|?1?x?2? B. ?x|?1?x?2? C.?x|x??1???x|x?2? D. ?x|x??1???x|x?2? A.
【答案】B解析:x2?x?2?0?x??1或x?2,即A?x|x??1或x?2,?CUA??x|?1?x?2? 故选B.
(2018·新课标Ⅱ,理2)已知集合A?A.9
????x,y?x
2?y2≤3,x?Z,y?Z,则A中元素的个数为( )
C.5
D.4
?B.8
【答案】A解析:① 当x??1时,y??101共有三个解;② 当x?0时, y??101共有三个解 ③ 当x?1时, y??101共有三个解;综上所述:共有9个整数点, 分别为?-1,1?、-1?、?-1,0?、?-1,1?、?0,?0,0?、?0,1?、,?1-1?、?1,0?、?1,1?,选A.
1,2?,则A(2018·新课标Ⅲ,理1)已知集合A??x|x?1≥0?,B??0,A.?0?
B.?1?
B?( )
2? C.?1,
1,2? D.?0,【答案】C 解析:∵A?{x|x?1?0}?{x|x?1},B?{0,1,2},∴AB?{1,2}.故选C.
x(2017,新课标Ⅰ,1)已知集合A?xx?1,B?x3?1,则( )
????A.AB?{x|x?0} B.AB?R C.AB?{x|x?1} D.AB??
x【答案】A解析:A??xx?1?,B??x3?1???xx?0?,∴AB??xx?0?,AB??xx?1?,选A.
(2017·新课标Ⅱ,2)设集合???1,2,4?,??xx?4x?m?0.若?2?????1?,则??( )
A.?1,?3? B.?1,0? C.?1,3? D.?1,5? 【答案】C 解析:∵ A故B??1,3?,选C.
(2017·新课标Ⅲ,1)已知集合A=A?(x,y)x?y?1,B?(x,y)y?x,则A数为( )
B??1? ∴ 1是方程x2?4x?m?0的一个根,即m?3,∴ B?xx2?4x?3?0,
,
???22???B中元素的个