微积分和数学分析引论答案

不做题就如同没有学过一样。希望将课本后的习题一道道自己做完,不要看答案。买习题

集也要买习题集,不买习题集的答案。 1《吉米多维奇数学分析习题集》

最近几年人们人云亦云的说这本书多么不好,批评计算题数目过多,不适合数学系等等。但这本习题集不再被广泛使用的原因是那本习题解答的出现,学生对答案的抄袭使这部书失去了价值。如果你不看答案的话它依然是数学分析第一习题集。不要没有做过就盲目的 批评。有没有做过自己心里知道,并会影响自己今后的学习。

2《数学分析习题课教材》第一版或《数学分析解题指南》第二版,林源渠,方企勤等 两本书一样的,再版换了名字。第一版网上有电子版,第二版可以买纸版。和3成一套。 3《数学分析习题集》林源渠,方企勤等

由于《吉米多维奇数学分析习题集》答案的出现使这本书得到的评价变高了,原因是这本

书没有答案。只能自己做。

4《数学分析习题精解》科学出版社版,还有裴礼文或者钱吉林的书 过考试不错,要学数学分析不提倡。 5各种教材的答案书 一堆垃圾。毁人不倦。

【篇三:数学系书籍推荐】

目录 引言

一数学分析 二高等数学 三高等代数 四线性代数 五解析几何 六概率论

七常微分方程 八偏微分方程

九数学物理方程(数学物理方法) 十复变函数 十一实变函数 十二泛函分析

十三高等几何 十四微分几何 十五拓扑学 十六近世代数 十七离散数学 十八组合数学 十九数值分析 二十数学建模 二十一数学史 附录 数学软件 后记 3楼 引言

些有经验的学长推荐些好书,以便不走弯路。二来恰好笔者也有类似经历,初接触 高等数学方面的书籍时,也不知有啥好坏或者稂莠之别,后来在一些这些书的内容中了解到、在网上一些学长的贴子中看到很多“经典”和比较“好”的教材、参考书、课外书籍等,于是在广泛查阅、拜读之后,把 我所看过的和所知道的一些很好的书目记录下来,提供朋友们参考。希望能给大家有所帮助。

实际上所谓的“好书”和经典书,并不限于数学方面,其他学科方面的有,相信大家也看过不少,这里只说数学方面的。以下结合本人经验和一些学长的见解,共写有二十一个专题,每个专题都有该学科的简介或者是小结;相应的介绍书籍则是按【教材】、

【习题集】、【辅导书】、【提高】四个方面来写,而且每本书后有简评供参考。最后附录介绍几个常用数学软件。 ============

注:1)打引号或书名号的课程名词被认为是指书籍或课程名,否则是指这一数学学科类(领域)。

2)以下推荐的书籍一般不标注版本,因为随时有新版出版的可能,并且不一定新版就比旧版的好一些,有时还不如旧版的。最好多结合几个版本来看(有三个以上版本的不要看第一版,结合看最新版和倒数几个旧版),这样能学到更多。这是笔者的经验。如果书后标有版本号的,一般是指比较好的版本。

3)关于出版社的问题,这个不必要过多追究,因为大部分书不会用一个以上的出版社出版,况且不同出版社出版同一本书,只是版式和符号的样式不同而已,内容不会有别。

4)书比较多,不可能每本(或者选取大多数自己喜欢的)都买,除非你非常有钱,或者

是个数学书籍收藏家。要知道,大学及其以上的教材、教参等都很贵,动辄每本二三十以上,四五十的也不少。因此,“少而精”地买到正版的就行,其余的可以到大学图书馆借阅(大部分我都是借阅的,我可买不起^-^)。

5)由于书籍很多,本人阅历也很有限,难以面面俱到,除了【教材】外以下只为《数学分析》、《高等数学》、《高等代数》、《线性代数》、《解析几何》、《概率论》、《常微分方程》提供【习题集】、【辅导书】和【提高】,而剩下课程的相关书籍只是不完全含有以上版块。大家可以根据相应课本寻找对应课后习题解析的参考书,或是配套的习题集即可。 4楼

一、“数学分析”

“数学分析”是数学或计算专业最重要的一门课,而且是今后数学专业大部分课程的基础,经常从一个知识点就能引申出今后的一门课,同时它也是初学时比较难的一门课。这里的“难”主要是指对数学分析思想和方法的不适应(高等数学上的方法与初等数学的方法有很大不同),其实随着学习的深入,适应了方法后,会感觉一点一点地容易起来,比如当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期(各个院校应该一样吧),学的时间也够长的~ 本课程主要讲的是以集合为基础而发展起来的变量和函数中的数学规律、分析与计算,是通往高等数学领域的基础工具之一。

这么多年来,国内外出现了很多非常优秀的教材和习题集以及辅导书,而且很多高校一直使用着。 【教材】

国内比较好的有(仅列出主要的,排列不分先后,下同): 1《数学分析》(共两册) 华东师范大学数学系编著

这应该是师范类使用最多的书,课后习题编排的还不错,同时这也是考研用得比较多的一本书。书的最后讲了一些流形上的微积分。虽然是师范类的书,不过还是值得一看的。 2《数学分析新讲》(共三册) 张筑生著

很好的书,内容和高度在国内算得上是比较突出的。值得一提的是,张老师文笔清

晰详细,证明深入浅出,通俗易懂。这个对初学者来说非常有帮助。 本书同时也被公认为是一本具有新观点的书,主要体现在一些经典问题处理方法上与一般的书有所不同:本书比较强调一般化,融入了一些更高的观点,如泛函、点集拓扑等。尤其精彩的是,这本书里面提供了一些问题讨论的专题附录,如stolz定理、正交曲线坐标系中的场论计算、二项式级数在收敛区间端点的敛散情况、布劳威尔不动点定理、斯通-维尔斯特拉斯逼近定理及其证明,等等。本书书在证明过程中通过技术化处理,降低了难度,容易被一般人理解。

遗憾的是书中没有课后习题,又由于书写的早,有的符号以现在的观点来看,不是很标准(按照张老师本人的说法,北大出版社找了家根本不懂怎么印数学书的印刷厂,所以版面不是很好看);另外感觉实数理论部分和含参数广义积分那章的内容写得不太全面。不过整体上本书还是瑕不掩瑜的。

张老师多年来疾病缠身,写这本书也是呕心沥血,手稿前后写了差不多五遍。像这样身患重病却为写书而兢兢业业地工作,其间所需要花费的精力可谓远非常人所能胜任的,以至于他在书的后记中也引了都云作者痴,谁解其中味这句曹雪芹自叹的话。不愿看到的是,张老师最终因劳累和疾病于02年去世。这也使得张老师重新修改此书的上述缺点,完善后再出新版的愿望成为不可能,这不能不说是这本书的遗憾。

3《数学分析》(共两册) 李成章,黄玉民编

作者是南开大学数学系老师,本书也是“南开大学数学教学丛书”里的“数学分析”分册,其深度与《数学分析新讲》类似,每章中附有丰富的习题。还好本书关于实数完备性那几个公理的关系写的比较全面,多元微积分学和含参数广义积分写的也相当详细(这也正好补上了《新讲》的不足^_^),不过感觉级数部分还是写得不是很详细。

书里面有一些提高性的内容,可以看看。

4《数学分析》(第3版) 欧阳光中,朱学炎,金福临,陈传璋著 普通高等教育“十一五”国家级规划教材。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,据说是用物理的观点写的,而且有的地方确实如果不听老师讲,你不知道它在说什么。虽

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4