学习必备 欢迎下载
北师大版数学七年级下册知识点总结
第一章整式的运算
一、单项式、单项式的次数:
只含有数字与字母的积的代数式叫做单项式。单独的一个数或一个字母也是单项式。 一个单项式中,所有字母的指数的和叫做这个单项式的次数。 二、多项式
1、多项式、多项式的次数、项 几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。 三、整式:单项式和多项式统称为整式。 四、整式的加减法:
整式加减法的一般步骤:(1)去括号;(2)合并同类项。 五、幂的运算性质:
1、同底数幂的乘法:a?a?amnm?n(m,n都是正整数)
(a)?a2、幂的乘方:
nnmnmn(m,n都是正整数)
3、积的乘方:(ab)?ab(n都是正整数) 4、同底数幂的除法:a?a?a六、零指数幂和负整数指数幂: 1、零指数幂:a?1(a?0); 2、负整数指数幂:a?p0mnm?nn(m,n都是正整数,a?0)
?1(a?0,p是正整数) ap七、整式的乘除法:
1、单项式乘以单项式:
法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:
法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:
单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
5、多项式除以单项式:
多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 八、整式乘法公式:
学习必备 欢迎下载
1、平方差公式: (a?b)(a?b)?a?b 2、完全平方公式: (a?b)?a?2ab?b (a?b)?a?2ab?b
22222222第二章 平行线与相交线
一、余角和补角:
1、余角:
定义:如果两个角的和是直角,那么称这两个角互为余角。 性质:同角或等角的余角相等。 2、补角:
定义:如果两个角的和是平角,那么称这两个角互为补角。 性质:同角或等角的补角相等。 二、对顶角:
我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角。
对顶角的性质:对顶角相等。 三、同位角、内错角、同旁内角:
直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。
四、平行线的判定:
1、两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
2、两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
3、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
补充平行线的判定方法:
(1)平行于同一条直线的两直线平行。
学习必备 欢迎下载
(2)在同一平面内,垂直于同一条直线的两直线平行。 (3)平行线的定义。 五、平行线的性质:
(1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。 (3)两直线平行,同旁内角互补。 六、尺规作图:
1、作一条线段等于已知线段。 2、作一个角等于已知角。
第三章 生活中的数据
一、科学记数法:
10的形式,一般地,一个绝对值较小的数可以表示成a?其中1?a?10,n是负整数。
二、近似数和有效数字:
1、近似数:
利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。
2、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个近似数的有效数字。 三、形象统计图:
n第四章 概率
一、事件发生的可能性;
人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。
二、游戏是否公平:
游戏对双方公平是指双方获胜的可能性相同。 三、摸到红球的概率: 1、概率的意义
P(摸到红球)=
摸到红球可能出现的结果数
所有可能出现的结果数2、确定事件和不确定事件的概率:
(1)必然事件发生的概率为1记作P(必然事件)=1 (2)不可能事件发生的概率为0,P(不可能事件)=0 (3)如果A为不确定事件 ,那么0
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m个结果,那么事件A发生的概率为P(A)=
m n第五章 三角形