阜宁县2018年春学期八年级期中学情调研数学试题
一、选择题(每题3分,共24分,请将答案填写在表格内) 题号 1 2 3 4 5 6 7 8 答案 1.不等式
的非负数解的个数为:A. 1个 B. 2个 C. 3个 D.4个
2.如果分式的值为,那么x为 A. B. C. D.
3. 不等式组的解集在数轴上表示正确的是
-3A. 1-3B. 1-3C. 1-3D. 14.在 、、
、
、
中分式有 A.2个 B.3个 C.4个 D.5个
5.函数的图象是双曲线,则的值是 A. B. C. D.6.某反倒函数的图象经过点(,),则此函数的图象也经过点 A. (,
) B. (
,
) C. (,) D. (
,)
7.已知反比例函数,下列结论正确的是 A. 图象经过点(,) B. 图象在第一、三象限 C.当
D.当
8.函数()在同一直角坐标系中的图象可能是
y y y y O x O x O x O x
二、填空题(每小题A. 3 分,共 B. 24 分) C. D. 9.若反比例函数
的图象经过点(
,),则=_______________;
10.当__________时,分式
有意义;
11.请你写出一个满足不等式
的正整数x的值_____________;
12.分式
的最简分分母是________________;
13.写出一个具有“图象的两个分支分别位于第二、四象限内”的反比例函数_____________(写出一个即可);14.已知
,,是反比例函数的图象上的三个点,且
,则
的大小关系是__________________________(用“>”表示)
15.货车行驶25千米与小车行驶35千米所用的时间相同,
已知小车每小时比货车多行驶20千米,求两车的速度各 为多少?设货车的速度为x千米/小时,依题意列方程 为____________________; 16.如图,
分别是反比例
图象上的两点,
过A、B作轴的垂线,垂足分别为C、D,连接OB、OA,
OA交BD于E点,△BOE的面积为,四边形ACDE的面 积为,则
三、解答题(共72分)
17.(8分)解不等式(组),并将解集在数轴上表示: (1) (2)
18.(8分)先化简:
19. (8分)解方程:
,然后从0,1,2中选取一个你认为合适的数作为x的值代入.
23. (10分)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料
表明:甲、乙两种鱼苗的成活率分别为90%和95%.
(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾? (2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?
(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?
20. (8分)已知图中的曲线是反比例函数(m为常数)
yy=2x图象的一支,
(1)这个反比例函数的另一支在第几象限?常数m的取值范围是什么?
(2)若该函数的图象与正比例函数
的图象在第一
象限的交点为A,过点A作x轴垂线,垂足为B,当△OABA 的面积为4时,求点A的坐标及反比例函数的解析式. OB x
21. (8分)去年春夏期间,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”、“豆你玩”.以绿豆为例,5月上旬某市绿豆的市场价已达18元/千克.市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格.经市场调研预测,该市每调进50吨绿豆,市场价格就下降1元/千克。为了既能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在6元/千克到8元/千克之间(含6元/千克和8元/千克),问调进的绿豆的吨数应在什么范围内为宜?
22. (10分)某校八年级两个班各为玉树地震灾区捐款1800元,已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%,请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程解决的问题,并写出解题过程.
24. (12分)已知反比例函数
与一次函数
图象交于P(
,)和Q(1,n)两点.
y (1)求这两个函数的关系式;
(2)在同一直角坐标系内画出它们的图象; (3)求△POQ的面积; (4)直接写出不等式的解集。
Ox