第二节 静定平面桁架
一、桁架的内力计算中采用的假定 (1桁架的结点都是光滑的铰结点;
(2各杆的轴线都是直线并通过铰的中心; (3荷载和支座反力都作用在结点上。 二、桁架的分类
(1简单桁架:由基础或一基本三角形开始,依次增加二元体形成。 (2联合桁架:由几个简单桁架按几何不变体系的组成规则形成。 (3复杂桁架:不属于前两类的桁架。
三、桁架的内力计算方法 1、结点法
取结点为隔离体,建立平衡方程求解的方法,每个结点最多只能含有两个未知力。该法最适用于计算简单桁架。
根据结点法,可以得出一些结点平衡的特殊情况,能使计算简化: (1两杆交于一点,若结点无荷载,则两杆的内力都为零(图2-2-1a 。
(2三杆交于一点,其中两杆共线,若结点无荷载,则第三杆是零杆,而共线的两杆内力大小相等,且性质相同(同为拉力或压力(图2-2-1b。
(3四杆交于一点,其中两两共线,若结点无荷载,则在同一直线上的两杆内力大小相等,且性质相同(图2-2-1c 。推论,若将其中一杆换成力F P ,则与F P 在同一直线上的杆的内力大小为F P ,性质与F P 相同(图2-2-1d 。
F N3
F N3=0 F N1=F N2=0 F N3=F N4(a (b(cF N4 (dF N3=F P F P N1F F N2 F N1 F N2 F N1 F N2 F N1 F N2 F N3 F N3
F N1=F N2,F N1=F N2, F N1=F N2, 图2-2-1
(4对称结构在正对称荷载作用下,对称轴处的“K ”型结点若无外荷载作用,则斜杆为零杆。例如
图2-2-2所示对称轴处与A 点相连的斜杆1、2都是零杆。 1A 2 F P F P A F P F P B F P F P B A (b(a X =0
图2-2-2 图2-2-3