P X P X
16 17
P A P B
1
1
0.2 0.2 0.04 P A P B
2
1
P A P B
1
2
0.2 0.4 0.4 0.2 0.16 P A P B
3
1
P X 18 P X 19
P A P B
1
3
P A P B
2
2
0.2 0.2 0.2 0.2 0.4 0.4 0.24 P A P B
4
1
P A P B
1
4
P A P B
2
3
P A P B
3
2
0.2 0.2 0.2 0.2 0.4 0.2
40. 0.4 0.24 P X
20
P A P B
2
4
P A P B
3
3
P A P B
4
2
0.4 0.2 0.2 0.4 0.2 0.2 0.2
P x 21 P x 22
P A P B
3
4
P A P B
4
3
0.2 0.2 0.2 0.2 0.08
P A P B
4
4
0.2 0.2 0.04 17
18
19
20
21
22
X P
Ôò n µÄ×îСֵΪ 19
16
0.04 0.16 0.24 0.24 0.2 0.08 0.04
¢Æ ÒªÁî P x ¡Ü n ¡Ý 0.5£¬ 0.04 0.16 0.24 0.5£¬ 0.04 0.16 0.24 0.24¡Ý 0.5
¢Ç ¹ºÂòÁã¼þËùÐè·ÑÓú¬Á½²¿·Ö£¬Ò»²¿·ÖΪ¹ºÂò»úÆ÷ʱ¹ºÂòÁã¼þµÄ·ÑÓã¬ÁíÒ»²¿·ÖΪ±¸¼þ²»×ã
ʱ¶îÍ⹺ÂòµÄ·ÑÓà µ± n 19ʱ£¬·ÑÓÃµÄÆÚ ÎªÍûµ± n 20ʱ£¬·ÑÓÃµÄÆÚ ÎªÍûËùÒÔӦѡÓà n 19
2
16. (1)Ô² A ÕûÀíΪ x 1
19 200 500 0.2 1000 0.08 1500 0.04 4040 20 200 500 0.08 1000 0.04 4080
2
y 16 £¬A ×ø±ê1,0 £¬Èçͼ£¬
4
BE¡ÎAC £¬Ôò ¡ÏC ¡ÏEBD £¬ÓÉ AC ¡ÏEBD ¡ÏD£¬Ôò EB ED
AD ,Ôò¡Ï D ¡ÏC £¬
2
3
C
1
A
x
AE EB AE ED AD 4
ËùÒÔ E µÄ¹ì¼£ÎªÒ»¸öÍÖÔ²£¬·½ Ϊ³Ì
x
2
2
y 3
P
1 £¬( y 0 )£»
D
4 2 2 4
B
E
1
2
3
4
4
¢Æ
C1 :
2 2
x y
1 £»Éèl : x my 1£¬
m x 1 £¬ÁªÁ¢lÓëÍÖÔ² C
1
434 3
ÒòΪ PQ¡Íl £¬ÉèPQ : y
21N
A
x
x my 1 x y µÃ
2
2
2
2
4224B
13m 4 y 6my 9 0£»
M
Q
231
44 3 Ôò
| MN |
2
2
2 2 2
1 m | y
M
y |
N
1 m
36m 36 3m
2
4 12 m
2
1 4
£»
3m | 2m |
£¬
2
4 3m
Ô²ÐÄAµ½ PQ ¾àÀë
| m 1 1 |
d 2
1 m
1 m
2 2
ËùÒÔ | PQ | 2 | AQ | d
2 16
4m
2 2
2
4 3m
2
4 £¬
1 m
2
2
1 m
2
12
m
1
S
MPNQ
1
m
4 3
2
m
4
24
2
1
| MN | | PQ |
2
1
24
1
12,8 3
1
2 2
3 m
4 1 m 3 m
4 3
2
m
x
x
1
41. £¨¢ñ£© f '( x) (x 1)e 2a( x 1) (x 1)(e
x
2a) £®
£¨i£©Éè a £¨ii£©Éè a
0 £¬Ôò f (x) (x 2)e £¬ f (x) Ö»ÓÐÒ»¸öÁãµã£® 0£¬Ôòµ± x (
,1)ʱ£¬ f '(x ) 0£»µ± x (1,
) ʱ£¬f '(x) 0 £®ËùÒÔ f ( x) ÔÚ (
,1)
Éϵ¥µ÷µÝ¼õ£¬ÔÚ
(1, ) Éϵ¥µ÷µÝÔö£®
a
0 ÇÒb ln £¬Ôò
f (1) ÓÖ e£¬ f (2) a£¬È¡ bb Âú×ã
2
2
a 2
f (b) (b 2) a(b 1)
2 f (x) ´æÔÚÁ½¸öÁãµã£®¹Ê
a(b
3
b) 0 £¬ 2
0 µÃ x 1
x »ò
ln( 2a) £®
) ʱ£¬ f '( x) 0£¬Òò´Ë f (x) ÔÚ(1,
) Éϵ¥µ÷µÝÔö£® ÓÖ
£¨iii£©Éè a 0 £¬ÓÉ f '(x)
Èô
e
£¬Ôòln(
a 2a) 1£¬¹Êµ± x (1,
2
µ± x 1ʱ£¬ f (x)
0£¬ËùÒÔ f ( x) ²»´æÔÚÁ½¸öÁãµã£®
2a) 1£¬¹Êµ± x (1,ln( 2a)) ʱ£¬ f '(x ) 0 £»µ± x (ln( 2 a),
) µ¥µ÷µÝÔö£®ÓÖµ±
) ʱ£¬
Èô
e
£¬Ôò ln(
a
2
f '( x) 0 £®Òò´Ë f (x) ÔÚ (1,ln( 2a)) µ¥µ÷µÝ¼õ£¬ÔÚ (ln( 2a ), f (x) 0£¬ËùÒÔ f (x) ²»´æÔÚÁ½¸öÁãµã£®
×ÛÉÏ£¬ a µÄȡֵ·¶Î§Îª (0,
x 1ʱ£¬
)£®
,1) £¬x2 (1,
)£¬2 x2
(
,1)£¬ f (x) ÔÚ (
,1) ÉÏ
£¨ £©²»·ÁÉè x1 x2 £¬ÓÉ£¨¢ñ£© Öª x1 (
µ¥µ÷µÝ¼õ£¬ËùÒÔ x1 x2
0 . ÓÉÓÚ f
2 x
2µÈ¼ÛÓÚ f (x1)
2
f (2 x2) £¬¼´ f (2 x2)
x2
2
x (2
2
x e )
2
2
a x
(
2
£¬¶ø f (x ) (x 2)e a(x 1)
2
0£¬ËùÒÔ
1)
2 2
2 x x
f (2 x )
2
x e
2
(x
2
2)e .
2
2
Éè
2 x
g( x) xe
2
( x 2)e £¬Ôò g (x) ( x 1)(e
x x x
e ) .
0 .
ËùÒÔµ± x 1g (x) ʱ£¬ 0£¬¶ø g (1) 0£¬¹Êµ± x 1
2 .
g(x) ʱ£¬
´Ó¶ø g(x )
2
f (2 x ) 0 £¬¹Ê x1 x2
2
22£®¢Å ÉèÔ²µÄ°ë¾¶Îª r £¬×÷ OK
¡ßOA OB £¬ AOB 120
ABÓÚ K
OA
¡àOK
AB£¬ A 30 £¬OK OA sin30
2
r
¡à AB Óë¡ÑO ÏàÇÐ ¢Æ ·½·¨Ò»£º
¼ÙÉè CD Óë AB ²»Æ½ÐÐ
CD Óë AB ½»ÓÚ F
2
FK FC FD ¢Ù
¡ß A ¡¢B ¡¢C ¡¢D Ëĵ㹲Բ ¡à FC FD ¡ß AK
FA FB
FK
AK FK
BK
BK
2
2
¡à FC FD ¡à AB¡ÎCD ·½·¨¶þ£º
FK AK FK AK FK AK ¢Ú ÓÉ¢Ù¢Ú¿É֪ì¶Ü
ÒòΪ A, B, C, DËĵ㹲Բ£¬²»·ÁÉèÔ²ÐÄΪ T £¬ÒòΪ
OA OB ,TA TB£¬ËùÒÔ O,T Ϊ AB µÄÖд¹ÏßÉÏ£¬
ͬÀí OC OD ,TC TD£¬ËùÒÔ OTΪCD µÄÖд¹Ïߣ¬ËùÒÔ AB¡ÎCD £®
23£®¢Å
x a cost
y 1 a sin t ¡à 2
x ¡à 2 ¡ß x
2
2
£¨t ¾ùΪ²ÎÊý£©
1 y
2
a ¢Ù
C ΪÒÔ 0 £¬1 ΪԲÐÄ£¬ a Ϊ°ë¾¶µÄÔ²£®·½³ÌΪ x 1
2
2
2 2
y 2 y 1 a 0
sin
£¬y
¡à
2 2 sin 1 a2 0
y
¼´Îª C µÄ¼«×ø±ê·½³Ì
1