2016Äê¸ß¿¼È«¹ú1¾íÀí¿ÆÊýѧÊÔÌâ¼°´ð°¸(word¾«Ð£½âÎö°æ)(1)

P X P X

16 17

P A P B

1

1

0.2 0.2 0.04 P A P B

2

1

P A P B

1

2

0.2 0.4 0.4 0.2 0.16 P A P B

3

1

P X 18 P X 19

P A P B

1

3

P A P B

2

2

0.2 0.2 0.2 0.2 0.4 0.4 0.24 P A P B

4

1

P A P B

1

4

P A P B

2

3

P A P B

3

2

0.2 0.2 0.2 0.2 0.4 0.2

40. 0.4 0.24 P X

20

P A P B

2

4

P A P B

3

3

P A P B

4

2

0.4 0.2 0.2 0.4 0.2 0.2 0.2

P x 21 P x 22

P A P B

3

4

P A P B

4

3

0.2 0.2 0.2 0.2 0.08

P A P B

4

4

0.2 0.2 0.04 17

18

19

20

21

22

X P

Ôò n µÄ×îСֵΪ 19

16

0.04 0.16 0.24 0.24 0.2 0.08 0.04

¢Æ ÒªÁî P x ¡Ü n ¡Ý 0.5£¬ 0.04 0.16 0.24 0.5£¬ 0.04 0.16 0.24 0.24¡Ý 0.5

¢Ç ¹ºÂòÁã¼þËùÐè·ÑÓú¬Á½²¿·Ö£¬Ò»²¿·ÖΪ¹ºÂò»úÆ÷ʱ¹ºÂòÁã¼þµÄ·ÑÓã¬ÁíÒ»²¿·ÖΪ±¸¼þ²»×ã

ʱ¶îÍ⹺ÂòµÄ·ÑÓà µ± n 19ʱ£¬·ÑÓÃµÄÆÚ ÎªÍûµ± n 20ʱ£¬·ÑÓÃµÄÆÚ ÎªÍûËùÒÔӦѡÓà n 19

2

16. (1)Ô² A ÕûÀíΪ x 1

19 200 500 0.2 1000 0.08 1500 0.04 4040 20 200 500 0.08 1000 0.04 4080

2

y 16 £¬A ×ø±ê1,0 £¬Èçͼ£¬

4

BE¡ÎAC £¬Ôò ¡ÏC ¡ÏEBD £¬ÓÉ AC ¡ÏEBD ¡ÏD£¬Ôò EB ED

AD ,Ôò¡Ï D ¡ÏC £¬

2

3

C

1

A

x

AE EB AE ED AD 4

ËùÒÔ E µÄ¹ì¼£ÎªÒ»¸öÍÖÔ²£¬·½ Ϊ³Ì

x

2

2

y 3

P

1 £¬( y 0 )£»

D

4 2 2 4

B

E

1

2

3

4

4

¢Æ

C1 :

2 2

x y

1 £»Éèl : x my 1£¬

m x 1 £¬ÁªÁ¢lÓëÍÖÔ² C

1

434 3

ÒòΪ PQ¡Íl £¬ÉèPQ : y

21N

A

x

x my 1 x y µÃ

2

2

2

2

4224B

13m 4 y 6my 9 0£»

M

Q

231

44 3 Ôò

| MN |

2

2

2 2 2

1 m | y

M

y |

N

1 m

36m 36 3m

2

4 12 m

2

1 4

£»

3m | 2m |

£¬

2

4 3m

Ô²ÐÄAµ½ PQ ¾àÀë

| m 1 1 |

d 2

1 m

1 m

2 2

ËùÒÔ | PQ | 2 | AQ | d

2 16

4m

2 2

2

4 3m

2

4 £¬

1 m

2

2

1 m

2

12

m

1

S

MPNQ

1

m

4 3

2

m

4

24

2

1

| MN | | PQ |

2

1

24

1

12,8 3

1

2 2

3 m

4 1 m 3 m

4 3

2

m

x

x

1

41. £¨¢ñ£© f '( x) (x 1)e 2a( x 1) (x 1)(e

x

2a) £®

£¨i£©Éè a £¨ii£©Éè a

0 £¬Ôò f (x) (x 2)e £¬ f (x) Ö»ÓÐÒ»¸öÁãµã£® 0£¬Ôòµ± x (

,1)ʱ£¬ f '(x ) 0£»µ± x (1,

) ʱ£¬f '(x) 0 £®ËùÒÔ f ( x) ÔÚ (

,1)

Éϵ¥µ÷µÝ¼õ£¬ÔÚ

(1, ) Éϵ¥µ÷µÝÔö£®

a

0 ÇÒb ln £¬Ôò

f (1) ÓÖ e£¬ f (2) a£¬È¡ bb Âú×ã

2

2

a 2

f (b) (b 2) a(b 1)

2 f (x) ´æÔÚÁ½¸öÁãµã£®¹Ê

a(b

3

b) 0 £¬ 2

0 µÃ x 1

x »ò

ln( 2a) £®

) ʱ£¬ f '( x) 0£¬Òò´Ë f (x) ÔÚ(1,

) Éϵ¥µ÷µÝÔö£® ÓÖ

£¨iii£©Éè a 0 £¬ÓÉ f '(x)

Èô

e

£¬Ôòln(

a 2a) 1£¬¹Êµ± x (1,

2

µ± x 1ʱ£¬ f (x)

0£¬ËùÒÔ f ( x) ²»´æÔÚÁ½¸öÁãµã£®

2a) 1£¬¹Êµ± x (1,ln( 2a)) ʱ£¬ f '(x ) 0 £»µ± x (ln( 2 a),

) µ¥µ÷µÝÔö£®ÓÖµ±

) ʱ£¬

Èô

e

£¬Ôò ln(

a

2

f '( x) 0 £®Òò´Ë f (x) ÔÚ (1,ln( 2a)) µ¥µ÷µÝ¼õ£¬ÔÚ (ln( 2a ), f (x) 0£¬ËùÒÔ f (x) ²»´æÔÚÁ½¸öÁãµã£®

×ÛÉÏ£¬ a µÄȡֵ·¶Î§Îª (0,

x 1ʱ£¬

)£®

,1) £¬x2 (1,

)£¬2 x2

(

,1)£¬ f (x) ÔÚ (

,1) ÉÏ

£¨ £©²»·ÁÉè x1 x2 £¬ÓÉ£¨¢ñ£© Öª x1 (

µ¥µ÷µÝ¼õ£¬ËùÒÔ x1 x2

0 . ÓÉÓÚ f

2 x

2µÈ¼ÛÓÚ f (x1)

2

f (2 x2) £¬¼´ f (2 x2)

x2

2

x (2

2

x e )

2

2

a x

(

2

£¬¶ø f (x ) (x 2)e a(x 1)

2

0£¬ËùÒÔ

1)

2 2

2 x x

f (2 x )

2

x e

2

(x

2

2)e .

2

2

Éè

2 x

g( x) xe

2

( x 2)e £¬Ôò g (x) ( x 1)(e

x x x

e ) .

0 .

ËùÒÔµ± x 1g (x) ʱ£¬ 0£¬¶ø g (1) 0£¬¹Êµ± x 1

2 .

g(x) ʱ£¬

´Ó¶ø g(x )

2

f (2 x ) 0 £¬¹Ê x1 x2

2

22£®¢Å ÉèÔ²µÄ°ë¾¶Îª r £¬×÷ OK

¡ßOA OB £¬ AOB 120

ABÓÚ K

OA

¡àOK

AB£¬ A 30 £¬OK OA sin30

2

r

¡à AB Óë¡ÑO ÏàÇÐ ¢Æ ·½·¨Ò»£º

¼ÙÉè CD Óë AB ²»Æ½ÐÐ

CD Óë AB ½»ÓÚ F

2

FK FC FD ¢Ù

¡ß A ¡¢B ¡¢C ¡¢D Ëĵ㹲Բ ¡à FC FD ¡ß AK

FA FB

FK

AK FK

BK

BK

2

2

¡à FC FD ¡à AB¡ÎCD ·½·¨¶þ£º

FK AK FK AK FK AK ¢Ú ÓÉ¢Ù¢Ú¿É֪ì¶Ü

ÒòΪ A, B, C, DËĵ㹲Բ£¬²»·ÁÉèÔ²ÐÄΪ T £¬ÒòΪ

OA OB ,TA TB£¬ËùÒÔ O,T Ϊ AB µÄÖд¹ÏßÉÏ£¬

ͬÀí OC OD ,TC TD£¬ËùÒÔ OTΪCD µÄÖд¹Ïߣ¬ËùÒÔ AB¡ÎCD £®

23£®¢Å

x a cost

y 1 a sin t ¡à 2

x ¡à 2 ¡ß x

2

2

£¨t ¾ùΪ²ÎÊý£©

1 y

2

a ¢Ù

C ΪÒÔ 0 £¬1 ΪԲÐÄ£¬ a Ϊ°ë¾¶µÄÔ²£®·½³ÌΪ x 1

2

2

2 2

y 2 y 1 a 0

sin

£¬y

¡à

2 2 sin 1 a2 0

y

¼´Îª C µÄ¼«×ø±ê·½³Ì

1

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@) ËÕICP±¸20003344ºÅ-4