Stator-Yoke Flux Density (Tesla): 1.8975 Rotor-Yoke Flux Density (Tesla): 0.881674 Air-Gap Flux Density (Tesla): 0.830289 Magnet Flux Density (Tesla): 0.929284 Stator-Teeth Ampere Turns (A.T): 348.031 Stator-Yoke Ampere Turns (A.T): 359.938 Rotor-Yoke Ampere Turns (A.T): 2.03805 Air-Gap Ampere Turns (A.T): 1486.68 Magnet Ampere Turns (A.T): -2197.17 Leakage-Flux Factor: 1
Correction Factor for Magnetic
Circuit Length of Stator Yoke: 0.14865 Correction Factor for Magnetic
Circuit Length of Roor Yoke: 0.591888 Fundamental Induced Voltage (V): 454.508 THD of Induced Voltage (%): 1.2048 Cogging Torque (N.m): 1.99316e-011 FULL-LOAD DATA
Load Resistance (ohm): 51.84 Load Inductance (H): 0.0799189 Load Line Voltage (V): 403.537 RMS Line Current (A): 6.98175 RMS Phase Current (A): 6.98175
Armature Thermal Load (A^2/mm^3): 107.875 Specific Electric Loading (A/mm): 17.5353 Armature Current Density (A/mm^2): 6.15186 Friction and Wind Loss (W): 70 Iron-Core Loss (W): 122.651
Armature Copper Loss (W): 363.688 Total Loss (W): 556.34
Output Power (W): 7508.67 Input Power (W): 8065.01 Efficiency (%): 93.1018
Apparent Power (VA): 8452.4
Synchronous Speed (rpm): 1500 Rated Torque (N.m): 51.3434
Short Circuit Current (A): 58.2215 WINDING ARRANGEMENT
The 3-phase, 2-layer winding can be arranged in 18 slots as below: AAAAAABBBBBBCCCCCC
Angle per slot (elec. degrees): 20 Phase-A axis (elec. degrees): 130 First slot center (elec. degrees): 0 TRANSIENT FEA INPUT DATA For Armature Winding:
Number of Turns: 192 Parallel Branches: 1
Terminal Resistance (ohm): 2.48702 End Leakage Inductance (H): 0.00115424 2D Equivalent Value:
Equivalent Air-Gap Length (mm): 174
Equivalent Stator Stacking Factor: 0.93 Equivalent Rotor Stacking Factor: 0.935345 Equivalent Br (Tesla): 1.22591 Equivalent Hc (kA/m): 924.696
Estimated Rotor Inertia (kg m^2): 0.0544861
Ansoft中RMxprt模块是基于传统电机设计方法(路的计算方法)而进行的电磁设计参数优化,仿真输出主要参数如下:
(线电压)Load Line Voltage (V): 403.537 (线电流)RMS Line Current (A):
6.98175
(相电流)RMS Phase Current (A): 6.98175 (输出功率)Output Power (W): 7508.67 (功率因数)Power Factor: 0.888347 (效率)Efficiency (%):
93.1018
从以上参数可以看出电磁设计中的各项指标已达设计任务书的全部要求,已达最优电磁设计的目的。 (2)图形:
图 5.6定∕转子截面图
上图中为RMxprt运行后自动生成的电机定∕转子横截面图。 点击view∕winding layout显示
图 5.7各相线圈分布图
图中真实地反映了定子绕组在定子槽中所放置的顺序,即各相绕组排列方式。 (3)输出曲线:
在Asoft∕RMxprt的Performance Curves能清晰的查看所设计电机中各参数随着电角度变化的曲线:
图5.9空载下气隙磁通波形
从图中可以看出气隙磁密的波形为平顶波,其所含有大量奇次谐波磁通。
图 5.8空载额定转速下每匝线圈感应电势波形
图中红色的曲线为槽中每根导体所感应出来的电势曲线。红色所反映的为每匝线圈所感应的电势波形,其中也含有各种奇次谐波。
从以上两张图形的曲线可以清晰的看出空载下各匝线圈的感应电势的波形和空载气隙磁通的波形基本是相似的,空载磁通在定子线圈中感应出与其同相位的感应电势;但是每匝线圈中的电势波形畸变率非常大,通常采用分布和短距的绕组形式能有效地消除感应电势的奇次(主要是5次和7次)谐波。
图5.10空载额定转速下每相绕组感应电势波形
由图可以看出在每相绕组均采用短距和分布的绕组形行可以明显的消弱各匝线圈感应电势的各奇次谐波,使之接近于正弦波以满足负载对输出电压波形的要求。
图5.11负载下各相绕组电流波形
当发电机带额定三相对称负载运行时各相电流波形为上图所示;图中黄、绿、红分别为A、B、C三相的负载电流波形,其中B相滞后于A相120度电角度、C相滞后于B相120度电角度。
图5.12负载下线∕相电势波形
(4)建立Maxwell2D几何模型
点击下拉菜单Analysis∕View Geometry,弹出2D Modeler窗口显示如下: